
Machine Learning for Language
Modelling

Marek Rei

Part 3: Neural network language models

Marek Rei, 2015

Recap

⚬ Language modelling:
⚬ Calculates the probability of a sentence
⚬ Calculates the probability of a word in the

sentence
⚬ N-gram language modelling

Marek Rei, 2015

Recap

⚬ Assigning zero probabilities causes problems
⚬ We use smoothing to distribute some

probability mass to unseen n-grams

Marek Rei, 2015

Recap

⚬ “Stupid” backoff

⚬ Kneser-Ney smoothing

⚬ Interpolation

Marek Rei, 2015

Evaluation: extrinsic

How to evaluate language models?
The best option: evaluate the language model
when solving a specific task

⚬ Speech recognition accuracy
⚬ Machine translation accuracy
⚬ Spelling correction accuracy

Compare 2 (or more) models, and see which one
is best

Marek Rei, 2015

Evaluation: extrinsic

Evaluating next word prediction directly

The

In

A

General

Natural

world

language

resources

resources

enemies

processing

understanding

sentences

text

toolkit

Natural language processing Accuracy
1/3 = 0.33

Marek Rei, 2015

Evaluation: extrinsic

Evaluating next word prediction directly

The

In

A

General

Natural

world

language

resources

resources

enemies

processing

understanding

sentences

text

toolkit

Natural language processing Accuracy
2/3 = 0.67

Marek Rei, 2015

Evaluation: intrinsic

Extrinsic evaluation can be
⚬ time consuming
⚬ expensive

Instead, can evaluate the task of language
modelling directly

Marek Rei, 2015

Evaluation: intrinsic

Prepare disjoint datasets

Measure performance on the test set, using an
evaluation metric.

Training data Development
data

Test
data

Marek Rei, 2015

Evaluation: intrinsic

What makes a good language model?

Language model that prefers good sentences to
bad ones

Language model that prefers sentences that are
⚬ real sentences
⚬ more frequently observed
⚬ grammatical

Marek Rei, 2015

Perplexity

The most common evaluation measure for
language modelling: perplexity

Intuition: The best language model is the one
that best predicts an unseen test set.
Might not always predict performance on an
actual task.

Marek Rei, 2015

Perplexity

The best language model is the one that best
predicts an unseen test set

Natural language __________

processing 0.4

understanding 0.3

sentences 0.15

text 0.1

toolkit 0.05

database 0.4

sentences 0.3

and 0.15

understanding 0.1

processing 0.05

processing 0.6

information 0.2

query 0.1

sentence 0.09

text 0.01

Marek Rei, 2015

Perplexity

Perplexity is the probability of the test set,
normalised by the number of words

Chain rule

Bigrams

Marek Rei, 2015

Perplexity example

Text: natural language processing
w p(w | language)

processing 0.6

language 0.2

the 0.1

natural 0.1

w p(w | natural)

processing 0.4

language 0.35

natural 0.2

the 0.05

w p(w | <s>)

processing 0.4

language 0.3

the 0.17

natural 0.13

What is the perplexity?

Minimising perplexity means maximising the
probability of the text

Marek Rei, 2015

Perplexity example

Let’s suppose a sentence consisting of random
digits

7 5 0 9 2 3 7 8 5 1 …
What is the perplexity of this sentence according
to a model that assigns P=1/10 to each digit?

Marek Rei, 2015

Perplexity

Trained on 38 million words, tested on 1.5
million words on WSJ text

Uniform Unigram Bigram Trigram

Perplexity vocabulary
size V

962 170 109

Lower perplexity = better language model

Jurafsky (2012)

Marek Rei, 2015

Problems with N-grams

Problem 1: They are sparse

There are V4 possible 4-grams. With V=10,000
that’s 1016 4-grams.
We will only see a tiny fraction of them in our
training data.

Marek Rei, 2015

Problems with N-grams

Problem 2: words are independent

They only map together identical words, but
ignore similar or related words.

If
P(blue daffodil) == 0

we could use the intuition that “blue” is related
to “yellow” and

P(yellow daffodil) > 0

Marek Rei, 2015

Vector representation

⚬ Let’s represent words (or any objects) as
vectors

⚬ Let’s choose them, so that similar words have
similar vectors

A vector is just an ordered list of values

[0.0, 1.0, 8.6, 0.0, -1.2, 0.1]

Marek Rei, 2015

Vector representation

How can we represent words as vectors?

Option 1: each element represents the word.
Also known as “1-hot” or “1-of-V” representation.

bear cat frog

bear 1 0 0

cat 0 1 0

frog 0 0 1

bear=[1.0, 0.0, 0.0] cat=[0.0, 1.0, 0.0]

Marek Rei, 2015

Vector representation

Option 2: each element represents a property,
and they are shared between the words.
Also known as “distributed” representation.

furry dangerous mammal

bear 0.9 0.85 1

cat 0.85 0.15 1

frog 0 0.05 0

bear = [0.9, 0.85, 1.0] cat = [0.85, 0.15, 1.0]

Marek Rei, 2015

Vector representation

When using 1-hot vectors, we can’t fit many and
they tell us very little.

Marek Rei, 2015

Vector representation

Marek Rei, 2015

Vector representation

furry dangerous

bear 0.9 0.85

Marek Rei, 2015

Vector representation

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

Marek Rei, 2015

Vector representation

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8

Marek Rei, 2015

Vector representation

Distributed vectors group similar words/objects
together

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8

lion 0.85 0.9

dog 0.8 0.15

Marek Rei, 2015

Vector representation

Can use cosine to calculate similarity between
two words

cos(lion, bear) = 0.998

Marek Rei, 2015

Vector representation

Can use cosine to calculate similarity between
two words

cos(lion, bear) = 0.998
cos(lion, dog) = 0.809
cos(cobra, dog) = 0.727

Marek Rei, 2015

Vector representation

We can infer some information, based only on
the vector of the word

Marek Rei, 2015

Vector representation

We don’t even need to know the labels on the
vector elements

Marek Rei, 2015

Vector representation

The vectors are usually not 2 or 3-dimensional.
More often 100-1000 dimensions.

bear -0.089383 -0.375981 -0.337130 0.025117 -0.232542 -0.224786 0.148717 -0.154768 -0.260046
-0.156737 -0.085468 0.180366 -0.076509 0.173228 0.231817 0.314453 -0.253200 0.170015
-0.111660 0.377551 -0.025207 -0.097520 -0.020041 0.117727 0.105745 -0.352382 0.010241
0.114237 -0.315126 0.196771 -0.116824 -0.091064 -0.291241 -0.098721 0.297539 0.213323
-0.158814 -0.157823 0.152232 0.259710 0.335267 0.195840 -0.118898 0.169420 -0.201631
0.157561 0.351295 0.033166 0.003641 -0.046121 0.084251 0.021727 -0.065358 -0.083110
-0.265997 0.027450 0.372135 0.040659 0.202577 -0.109373 0.183473 -0.380250 0.048979
0.071580 0.152277 0.298003 0.017217 0.072242 0.541714 -0.110148 0.266429 0.270824 0.046859
0.150756 -0.137924 -0.099963 -0.097112 -0.110336 -0.018136 -0.032682 0.182723 0.260882
-0.146807 0.502611 0.034849 -0.092219 -0.103714 -0.034353 0.112178 0.065348 0.161681
0.006538 0.364870 0.153239 -0.366863 -0.149125 0.413624 -0.229378 -0.396910 -0.023116

Marek Rei, 2015

Idea

⚬ Let’s build a neural network language model
⚬ … that represents each word as a vector
⚬ … and similar words have similar vectors

⚬ Similar contexts will predict similar words
⚬ Optimise the vectors together with the

model, so we end up with vectors that
perform well for language modelling
(aka representation learning)

Marek Rei, 2015

Neuron

⚬ A neuron is a very basic classifier
⚬ It takes a number of input signals

(like a feature vector) and outputs a single
value (a prediction).

Marek Rei, 2015

Artificial neuron

Input: [x0, x1, x2]
Output: y

Marek Rei, 2015

Artificial neuron

Marek Rei, 2015

Sigmoid function

⚬ Takes in any value
⚬ Squeezes it into a

range between
0 and 1

⚬ Also known as the
logistic function

⚬ A non-linear activation
function allows us to
solve non-linear
problems

Marek Rei, 2015

Artificial neuron

Marek Rei, 2015

Artificial neuron

x0 x1 z y

bear 0.9 0.85 -0.8 0.31

cat 0.85 0.15 0.55 0.63

cobra 0.0 0.8 -1.6 0.17

lion 0.85 0.9 -0.95 0.28

dog 0.8 0.15 0.5 0.62

Marek Rei, 2015

Artificial neuron

It is common for a neuron to have a separate
bias input.
But when we do representation learning, we
don’t really need it.

Marek Rei, 2015

Neural network

Many neurons connected together

Marek Rei, 2015

Neural network

Usually, the neuron is shown as a single unit

Marek Rei, 2015

Neural network

Or a whole layer of neurons is represented as a
block

Marek Rei, 2015

Matrix operations

⚬ Vectors are matrices with a single column
⚬ Elements indexed by row and column

Marek Rei, 2015

Matrix operations

Multiplying by a constant - each element is
multiplied individually

Marek Rei, 2015

Matrix operations

Adding matrices - the corresponding elements
are added together

Marek Rei, 2015

Matrix operations

Matrix multiplication - multiply and add
elements in corresponding row and column

Marek Rei, 2015

Matrix operations

Matrix transpose - rows become columns,
columns become rows

Marek Rei, 2015

Neuron activation with vectors

Marek Rei, 2015

Neuron activation with vectors

Marek Rei, 2015

Feedforward activation

⚬ The same process applies when activating
multiple neurons

⚬ Now the weights are in a matrix as opposed
to a vector

⚬ Activation f(z) is applied to each neuron
separately

Marek Rei, 2015

Feedforward activation

Marek Rei, 2015

Feedforward activation

1. Take vector from the previous layer
2. Multiply it with the weight matrix
3. Apply the activation function
4. Repeat

Marek Rei, 2015

Feedforward activation

Marek Rei, 2015

Neural network language model

Input: vector
representations of
previous words
E(wi-3), E(wi-2), E(wi-1)

Output: The
conditional probability
of wi being the next
word
P(wi | wi-1 wi-2 wi-3)

Marek Rei, 2015

Neural network language model

We can also think of
the input as a
concatenation of the
context vectors

The hidden layer h is
calculated as in
previous examples

How do we calculate
P(wi | wi-1 wi-2 wi-3) ?

Marek Rei, 2015

Softmax

⚬ Takes a vector of values and squashes them
into the range (0,1), so that they add up to 1

⚬ We can use this as a probability distribution

Marek Rei, 2015

Softmax

0 1 2 3 SUM

z 2.0 5.0 -4.0 0.0 3

exp(z) 7.389 148.413 0.018 1.0 156.82

softmax(z) 0.047 0.946 0.000 0.006 ~1.0

Marek Rei, 2015

Softmax

0 1 2 3 SUM

z -5.0 -4.5 -4.0 -6.0 -19.5

exp(z) 0.007 0.011 0.018 0.002 0.038

softmax(z) 0.184 0.289 0.474 0.053 1.0

Marek Rei, 2015

Neural network language model

Our output vector o
has an element for
each possible word wj

We take a softmax over
that vector

The result is used as
P(wi | wi-1 wi-2 wi-3)

Marek Rei, 2015

Neural network language model

1. Multiply input vectors
with weights

2. Apply the activation
function

Bengio et al. (2003)

Marek Rei, 2015

Neural network language model

3. Multiply hidden vector
with output weights

4. Apply softmax to the
output vector

Now the j-th element in the output vector, oj,
contains the probability of wj being the next
word.

Marek Rei, 2015

NNLM example

Word embedding
(encoding) matrix E
V = 4, M = 3

Each word is
represented as a 3-
dimensional column
vector

Bob often goes swimming

-0.5 -0.2 0.3 0

0.1 0.5 -0.1 -0.4

0.4 -0.3 0.6 0.2

Marek Rei, 2015

NNLM example

The weight matrices
going from input to the
hidden layer

They are position-
dependent

0.2 -0.1 0.4

-0.2 0.3 0.5

0.1 0 -0.3

0 -0.2 0.2

0.1 0.3 -0.1

-0.3 0.4 0.5

-0.1 0.1 -0.4

0.3 0 0.4

-0.2 0.2 -0.3

W0

W1

W2

Marek Rei, 2015

NNLM example

Output (decoding)
matrix, Wout

Each word is
represented as a 3-
dimensional row
vector

Bob -0.4 -0.6 0.1

often 0.5 -0.2 -0.5

goes -0.1 0 0.4

swimming 0.6 0.2 -0.3

Marek Rei, 2015

NNLM example

1. Multiply input vectors with weights

W2E(wi-3) W1E(wi-2) W0E(wi-1) z

-0.1 -0.16 0.31 0.05

0.01 0.16 0.21 0.38

0 0.11 -0.15 -0.04

Marek Rei, 2015

NNLM example

2. Apply the activation function

h

0.512

0.594

0.49

Marek Rei, 2015

NNLM example

3. Multiply hidden vector with output weights

s

-0.512

-0.108

0.145

0.279

Marek Rei, 2015

NNLM example

4. Apply softmax to the output vector

o

Bob 0.151

often 0.226

goes 0.291

swimming 0.333

P(Bob | Bob often goes) = 0.151
P(swimming | Bob often goes) = 0.333

Marek Rei, 2015

References
Pattern Recognition and Machine Learning
Christopher Bishop (2007)

Machine Learning: A Probabilistic Perspective
Kevin Murphy (2012)

Machine Learning
Andrew Ng (2012)
https://www.coursera.org/course/ml

Using Neural Networks for Modelling and Representing Natural Languages
Tomas Mikolov (2014)
http://www.coling-2014.org/COLING%202014%20Tutorial-fix%20-%20Tomas%
20Mikolov.pdf

Deep Learning for Natural Language Processing (without Magic)
Richard Socher, Christopher Manning (2013)
http://nlp.stanford.edu/courses/NAACL2013/

https://www.coursera.org/course/ml
https://www.coursera.org/course/ml
http://www.coling-2014.org/COLING%202014%20Tutorial-fix%20-%20Tomas%20Mikolov.pdf
http://www.coling-2014.org/COLING%202014%20Tutorial-fix%20-%20Tomas%20Mikolov.pdf
http://www.coling-2014.org/COLING%202014%20Tutorial-fix%20-%20Tomas%20Mikolov.pdf
http://nlp.stanford.edu/courses/NAACL2013/
http://nlp.stanford.edu/courses/NAACL2013/

Marek Rei, 2015

Extra materials

Marek Rei, 2015

Entropy

The expectation of a discrete random variable X
with probability

The expected value of a function of a
discrete random variable with probability

Marek Rei, 2015

Entropy

The entropy of a random variable is the
expected negative log probability

Entropy is a measure of uncertainty.

Entropy is also a lower bound on the average
number of bits required to encode a message.

Marek Rei, 2015

Entropy of a coin toss

A coin toss comes out heads (X=1) with
probability p, and tails (X=0) with
probability 1−p.

1) p = 0.5

2) p = 1.0

Marek Rei, 2015

Cross entropy

The cross-entropy of a (true) distribution p*
and a (model) distribution p is defined as:

H(p*,p) indicates the avg. number of bits
required to encode messages sampled from p*
with a coding scheme based on p.

Marek Rei, 2015

Cross entropy

We can approximate H(p*,p) with the
normalised log probability of a single very long
sequence sampled from p.

Marek Rei, 2015

Perplexity and entropy

Marek Rei, 2015

Perplexity example

Text: natural language processing
w p(w | language)

processing 0.6

language 0.2

the 0.1

natural 0.1

w p(w | natural)

processing 0.4

language 0.35

natural 0.2

the 0.05

w p(w | <s>)

processing 0.4

language 0.3

the 0.17

natural 0.13

What is the perplexity?

And entropy?

