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Recap

P(word) =

number of times we see this word in the text

total number of words in the text

P(word | context) =
number of times we see context followed by word

number of times we see context



Recap

P(the weather is nice) = ?

Using the chain rule
N

P(wi, ... ,wy)=]]Pwiwi, ... ,wi—1)
i=1

P(the weather is nice) =
P(the) * P(weather | the) *
P(is | the weather) *
P(nice | the weather is)



Recap

Using the Markov assumption
Pwj|wy ... w; 1) = Pw;|w; _ow;_1)

P(the weather is nice) =
P(the | <s>) *
P(weather | the) *
P(is | weather) * P(nice | is)



Data sparsity

The scientists are trying to solve the mystery

If we have not seen “trying to solve” in our training data,
then

P(solve | trying to) = 0

© The system will consider this to be an impossible
word sequence

©  Any sentence containing “trying to solve” will have 0
probability

© Cannot compute perplexity on the test set (div by 0)



Data sparsity

Shakespeare works contain N=884,647 tokens,
with V=29,066 unique words.

S Around 300,000 unique bigrams by
Shakespeare

© There are V¥V = 844,000,000 possible
bigrams

S S0 99.96% of the possible bigrams were
never seen



Data sparsity

Cannot expect to see all possible sentences (or
word sequences) in the training data.

Solution 1: use more training data
© Does help but usually not enough

Solution 2: Assign non-zero probability to
unseen N-grams

© Known as smoothing



Smoothing: intuition

Take a bit from the ones who have,
and distribute to the ones who don't

P(w | trying to)

get find change reward




Smoothing: intuition

Take a bit from the ones who have,
and distribute to the ones who don't

P(w | trying to)

find change reward solve

Make sure there's still a valid probability distribution!



Really simple approach

During training
© Choose your vocabulary
(e.g., all words that occur at least 5 times)

© Replace all other words by a special token
<unk>

During testing

© Replace any word not in the fixed vocabulary
with <unk>

© But we still have zero counts with longer n-
grams



Add-1 smoothing (Laplace)

Add 1 to every n-gram count

C(w;—1w; C'(w;_qw;
RW-foLE(wi‘wi_l) — ( 1 ) _ ( 1 )

> Clwinw;)  C(wi)

C(w.i_lw.z-) + 1 C’(w.z-_lwz-) + 1

P di\W; W; 1) = =
Ad“( | 1) Zj(C(wi_le) + 1) C(wz’.—1> +V
As if we've seen every possible n-gram at least

once.



Original:

Add-1;:

Add-1 counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 |
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 | 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1




Original:

Add-1 probabilities

C’(wi_lwi) + 1

Pagar(w;|w;—1)

Clw—1)+V
1 want | to eat chinese | food | lunch | spend

1 0.002 [0331|0 0.0036 | 0 0 0 0.00079

want 0.0022 | 0 0.66 [ 0.0011 | 0.0065 |0.0065| 0.0054 | 0.0011

to 0.00083 | 0 0.0017 { 0.28 | 0.00083 | O 0.0025 | 0.087

eat 0 0 0.0027 | O 0.021 0.0027 [ 0.056 |0

chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0

food 0014 |0 0.014 |0 0.00092 | 0.0037 | O 0

lunch | 0.0059 | O 0 0 0 0.0029 | O 0

spend || 0.0036 |0 0.0036 | 0 0 0 0 0

| i | want | to | eat | chinese | food | lunch | spend |

1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056( 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058| 0.00058] 0.00058| 0.00058| 0.00058




Reconstituting counts

Let's calculate the counts that we should have
seen, in order to get the same probabilities as
Add-1 smoothing.

C*(w;j—1w;) = Pagar(wi|lw;—1)-C(w;—1)

B C(wi_lwi) + 1 |
- Clwj)+V i)




Add-1 reconstituted counts

Original:

Add-1;:

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend | 0 | 0 0 0 0 0

1 want to eat chinese | food| lunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16




Add-1 smoothing

Advantage:
© Very easy to implement

Disadvantages:

© Takes too much probability mass from real
events

S Assigns too much probability to unseen
events

© Doesn’t take the predicted word into account

Not really used in practice



Additive smoothing

Add k to each n-gram

C(w;_1w;
PrrpE(wi|wi—1) = &;,11)2)
z_

Clw;_jw;) + 1

P pqa1 (wi|wi—1) = Clwr ) 1V
i

Clwj_qw;) + k
Clw;_1) + kV
Generalisation of Add-1 smoothing

Ppga(wi|lw;—1) =



Good-Turing smoothing

N, =frequency of frequency c
The count of things we've seen c times

Example: hello how are you hello hello you

w o
hello 3
you 2
how 1

1

dare

N =1
3

N =1

2

N =2
1



Good-Turing smoothing

O

Let's find the probability mass assigned to
words that occurred only once
© Distribute that probability mass to words that
were never seen
ot — (C+ 1> ' Nc—l—l
Ne

C - original (real) word count

(c+1)-Noy - the probability mass for words
with frequency c+1

ct - new (adjusted) word count



Good-Turing smoothing

Bigram ‘frequencies of frequencies’ from 22 million AP
bigrams, and Good-Turing re-estimations after Church
and Gale (1991)

N_ =V?- |[number of observed bigrams|

¢ (MLE) N. c* (GT)
74,671,100,000 0.0000270
2,018,046 0.446
449,721 1.26
188,933 2.24
105,668 3.24

O 0 1 ON D B Wi = O

68,379 4.22
48,190 5.19
35,709 6.21
27,710 7.24
22,280 8.25




Good-Turing smoothing

C(w;_1w;
Pyrpp(wilwi—1) = (g(;_ll)@)
i

C™* (w; —w;
Par(wilwi—1) = CE(Uj 11)2)
.

C*(w;_jw;) - Good-Turing adjusted count for the
bigram



Good-Turing smoothing

© |If there are many words that we have only
seen once, then unseen words get a high
probability

S If we there are only very few words we've
seen once, then unseen words get a low
probability

© The adjusted counts still sum up to the
original value



Good-Turing smoothing

Problem:
What if N, = 0?7

1

c Nc = 9
50
100 1
50 2 =0
49 4 5
48 )
2 (C+ 1) ' Nc—l—l




Good-Turing smoothing

Solutions

© Approximate N _at high values of c with a
smooth curve
f(c)=a+0b-log(c)
Choose a and b so that f(c) approximates N_
at known values

© Assume that cis reliable at high values, and
only use c* for low values

Have to make sure that the probabilities are still
normalised



Backoff

Perhaps we need to find the next word in the
sequence
Next Tuesday I will varnish

If we have not seen “varnish the” or “varnish
thou" in the training data, both Add-1 and Good-

Turing will give
P(the | varnish) = P(thou| varnish)

But intuitively
P(the | varnish) > P(thou| varnish)

Sometimes it's helpful to use less context



Backoff

© Consult the most detailed model first and, if
that doesn't work, back off to a lower-order
model
© If the trigram is reliable (has a high count),

then use the trigram LM

© Otherwise, back off and use a bigram LM

© Continue backing off until you reach a model
that has some counts

© Need to make sure we discount the higher
order probabilities, or we won't have a valid
probability distribution



“Stupid” Backoff

© A score, not a valid probability
© Works well in practice, on large scale datasets

S(’U).,jl’w.,j_g w,-,_l) — <

S(wi|w;—1) = <

5 C ( w; -9 W; -1 ‘u}.,_j)
C ('u.?.zj_-z w; —1 )

0.4+ S(wi|w;-1) otherwise

1f C(’U)I_Z W;—1 TUI) > ()

[ C(w;—1 w; :
é(u.‘,'_l_l) ) lf C<wi—1 wz) > O

0.4 S(w;) otherwise

S(w;) = C(wi)

N =

N
number of words in text



Interpolation

© Instead of backing off, we could combine all
the models

© Use evidence from unigram, bigram, trigram,
etc.

© Usually works better than backoff

Pnterp(Wi|wi—2 wi—1) = A P(w;|wi—2 wi_1)
‘|‘)\2P(U),ﬁ|’u,’j_1>
+ A3 P(w;)

M+ XA+ A3=1



Interpolation

Tra | N | ng data Development Test

data data

© Train different n-gram language models on
the training data

© Using these language models, optimise

lambdas to perform best on the development
data

© Evaluate the final system on the test data



Jelinek-Mercer interpolation

Lambda values can change based on the n-gram
context

Usually better to group lambdas together, for
example based on n-gram frequency, to reduce

parameters

Pinterp(Wilwi—e wi—1) =A(wi—e wi—1)P(wi|wi—2 wi_1)
Ao(wi—g w1 ) P(w;|w;_1)
)\3(’11)@—2 wz’—l)P (wz)




Absolute discounting

Combining ideas from

¢ (MLE) ¢ (Good-Turing) | jnterpolation and Good-
0 0.0000270 Tur

1 0.446 =l

2 1.26

Z i'ii Good-Turing subtracts

5 479 approximately the same
6 5.19 amount from each

7 6.21 count

8 7.24

9 8.25

Use that directly



Absolute discounting

O Subtract a constant amount D from each
count

S Assign this probability mass to the lower
order language mode]



Absolute discounting

backoff weight

s Wy 4 .
A QO T 7)) ) + Mwi-z wi—1) Paps(wilwi-1)

P abs ('u)"i | Ww;—o2 W; ) =

C Wwi—-2 Wi
\ ( 2 l) j | _
discounted trigram probability bigram probability

D
- N i i
Gl s i) N 14 (W;—g wy_q o)j

)\(wz’—Q wz‘-1) —

The number of unique words w. that follow context (w. , w. )
Also the number of trigrams we subtract D from
The o is a free variable

N1_|_(wz'_2 W;_1 0) = | {w]' : C(wi_g W;_1 wj) > 0}|



Interpolation vs absolute discounting

ma:z:(C(wi_g Wi -1 'wi) — D, 0)

o )\ Wi_o W;_1 P (w: 1w _ -
Clwiz i) (Wi-2 Wi1) Paps(wilwi )

P, a,bs('u}il'u}i—Z 'wi—l) =

\ J \ J\ J
trigram weight trigram probability bigram weight bigram probability
4 YA AY4 A4 \

C ('w,'_-z Wwi—1 'wi)

+(1=A Wi—2 W;—: Pin erp\ Wi | W;—
C(wi-2 wi-1) (I=Mwi-2 wi-1)) Pinterp(wi|wi-1)

Pintcr'p('wilul’i—‘.?. wi—l) = /\('wi—2 'wz‘—l)

C(w;_s w;—1 w;) - Trigram count

D - Discounting parameter
0<D<1



Kneser-Ney smoothing

© Heads up: Kneser-Ney is considered the
state-of-the-art in N-gram language modelling

© Absolute discounting is good, but it has some
problems

S For example: if we have not seen a bigram at
all, we are going to rely only on the unigram
probability



Kneser-Ney smoothing

can’t see without my reading

If we've never seen the bigram “reading
glasses”, we'll back off to just P(glasses)
“Francisco” is more common than “glasses”,
therefore

P(Francisco) > P(glasses)

But “Francisco” almost always occurs only
after “San”



Kneser-Ney smoothing

Instead of
P(w) - how likely is w

we want to use

Peontinuation(w) - how likely is w to appear as a
novel continuation

[{w;_1 : C(w;_1 w)>0}| - number of unique words
that come before w
{(w;—1 w;) « Clw;_y wy) >0}] - total unique bigrams



Kneser-Ney smoothing

For a bigram language model:

max(C(w;—1 w;) — D, 0)
C’(wi_l)

P I&"A"'(w'z'.|wi—1> — + )\(wi—l)P Conti'nrzvz.a.tion(wi>

General form:

max (C-’\ \( : n—+—l) o ‘D? O) i—1 i
+/\(u”’:—n )P-’\ N (U |U i—n )
Cl\ \(ut n—+—l.) i +2

‘Pf\\' U |U; n+l)_

count(e) for the highest order
CK;\'(.) = { ( )

continuationcount(e) for any lower order



Kneser-Ney smoothing

(is) = ?
(Paul) =7
(running) = ?

contlnuatlon

Paul 1is running Pcontlnuatlon

Mary 1s r‘unnj_ng continuation

Nick is cycling PKN(runningliS) _ 9

They are running

max(C(w;—1 w;) — D, 0)
C(w;-1)
| {w;—1 @ C(wi—; w) > 0}
[{(wi-r wi) = Clwi—y wi) > 0} |

A (U}, —1 ) I continuation (’U}I)

Py (wi|lwi-1) =

P, continuation(w) —

D
C<wi_1>

AMw;_1) = - N1+ (wi—1 o) D = 1



Kneser-Ney smoothing

(is) = 3/11
(Paul) = 1/11
(running) = 2/11

contlnuatlon

Paul is running gcontlnuatlon
Mar\y 1s r\unning continuation
Nick is cycling PKN(runninglis)=
They are running 1/3 + (2/3) * (2/11)

max(C(w;—1 w;) — D, 0)
C(wi-1)
| {w;—1 : Clw;_1 w) > 0}]
[{(wimy wi) = Clwiy wi) > 0} |

+ )\ (UJ 1—1 ) P, continuation (Uj 1)

PKN(?Uvzi|wzi—1) =

P con,tinu.ation,(w) —

D
C(U)i_l)

AMw;_1) = - N1+ (wi—1 o) D = 1



Recap

© Assigning zero probabilities causes problems
© We use smoothing to distribute some
probability mass to unseen n-grams

change solve get find change reward solve



Recap

Add-1 smoothing

C(wi_lwi) + 1

Ppgar(wilwi—1) = Clwy) 4+ V
0

Good-Turing smoothing

C* (wi—1w;) ¢ (c+1)-Neyg

Por(wiwi—1) = Clwiy) ¢’ =
"



Recap

Backoff

( C(wj—1 w;) .

if C w;_1 W;) > 0
S(wi|wi—1) = < C(wi-1) (wi—1 w;)
0.4 S(w;) otherwise

Interpolation

Pinterp(wzt|wzi—2 wzi—l) — )\lp(wi|wi—2 wzi—l)
+)\2P(w.i|wl:_1)
+)\3P(wi)



Recap

Absolute discounting

mazx(C(wi-2 wi—1 w;) — D, 0)
C('u..’i_g 'U.»‘z'_l)

P a.bs(‘U-"i|'U-’i—2 w;_1) = + Mwi—2 w;i—1) P, a.bs('u—"‘i|u—"'i—1)

Kneser-Ney

max(C(w;—1 w;) — D, 0)
C’(w,;_l)

PI‘\"A"'(w'i|w'i—l> — + )\(wi—1>P(?.onti'nxz,t.a.tion(w'zf)
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Katz Backoff

Discount using Good-Turing, then distribute the
extra probability mass to lower-order n-grams

.P(‘;'j' (‘l.l.x’,j |1L"i_2 w; - ) if C ('U.f‘i |'l.l..’i_2 w; - ) > ()

a(wi-2 wi-1) - P/m.zz('u.r,:|~u;,,:_1) otherwise

Pkat:-:('l-l-v”i"U-v”i—Z 'U-»‘zt—l) o {

PGT(’IU,'V|’U).,'V_1) if C(U),jlw.,j_l) > ()

a(w;—1) - Per(w;) otherwise

Pl.:atz(wi|wi—1> — {

1 — le..’jIC('u,‘i_Q w;—1 w;)>0) P(;T(’LU]'|’U),'__2 wi—l)

1 o Z 'l.l,’j O ( W;—9 W;—1 fu;]- ) > ()) P(;T ( w_] | wz — | )

a(w;_g wi—1) =



