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Sequence Labeling Attending to Character Representations

The task:
Given a sequence of tokens, predict a label for every token.
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= Integrating character-level features into sequence labeling

= 'The resulting vector Z is used as the word representation in the |
increased performance on all benchmarks.

sequence labeling model.
= Dynamically combining character-based and word representations

consistently outperformed concatenation, even using fewer parameters.

Results

= Both the character-level component and the word-level sequence
labeling model are trained together.

= Experiments on 8 different datasets and 4 different tasks: POS-tagging, named entity recognition, error detection, and chunking.
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