Compositional Sequence Labeling Models for Error Detection in Learner Writing Marek Rei and Helen Yannakoudakis University of Cambridge

Error Detection

Additional Training Data

The task:

Detect errors in learner writing (spelling, grammar, word usage, etc). **Examples:**

I want to travel **on** July and because **of** it is more suitable for me. We don't need to wear clothes like layer and layer. The restaurant was closed because **unknown** reasons.

- We found that error detection results could be substantially improved by using additional training data.
- Including NUCLE had almost no

Applications:

- Immediate feedback in self-tutoring systems for language learning.
- Automated exam grading for language testing.
- Providing language checking in general writing applications.

Compositional Architectures

Experimenting with alternative architectures for error detection.

- **Convolutional** network with window size 7 around the target word.
- **Deep convolutional** network, using an extra convolution to capture higher-order features. Bidirectional RNN,

effect on performance, likely due to differences in writing requirements.

• The network performance plateaued around 8M tokens of training data.

Figure 1: $F_{0.5}$ measure on the public FCE test set, as a function of the total number of tokens in the training set.

CoNLL-14 Shared Task Dataset

- CoNLL-14 error correction dataset (Ng et al., 2014) converted to an error detection task.
- The network outperformed all shared task systems, with an absolute improvement of 3%, without using manual engineering.

- constructing context representations with Elman-style RNNs.
- Deep bidirectional RNN, using two stacked layers of RNNs.
- **Bidirectional LSTM**, allowing the recurrent component to select which context to keep.
- Deep bidirectional LSTM, adding a second LSTM layer.
- For comparison, a Conditional Random Fields (**CRF**, Lafferty et al., 2001) model, as implemented in CRF++.

Figure 2: $F_{0.5}$ detection score on the CoNLL-14 Shared Task dataset (annotation 2).

Essay Scoring

- We integrated probabilities from the error detection system as features in an essay scoring system.
- Achieved substantial improvements over state-of-the-art and performance comparable to human annotators.

	r	ho
Human annotators	79.6	79.2

- Models evaluated by detecting errors in the publicly released FCE dataset of learner writing (Yannakoudakis et al., 2011)
- The best results for error detection were achieved with a bidirectional LSTM architecture, using pretrained embeddings, an extra narrow hidden layer, and a softmax output layer.

	De	evelopme	ent		Test	
	Р	R	$F_{0.5}$	Р	R	$F_{0.5}$
CRF	62.2	13.6	36.3	56.5	8.2	25.9
CNN	52.4	24.9	42.9	46.0	25.7	39.8
Bi-RNN	63.9	18.0	42.3	51.3	19.0	38.2
Bi-LSTM	54.5	28.2	46.0	46.1	28.5	41.1
Deep Bi-LSTM	56.7	21.3	42.5	48.2	21.6	38.6

Table 1: Performance of alternative models on the FCE dataset.

Table 2: Pearson's correlation r and Spearman's correlation ρ on essay scoring.

Example Output

- The main **events** of the party will end up at about 12:30 in the night.
- Or even in cars and **washmachines there're** computer chips.
- Finally, **the** last day I **sugget** you **to go** to the mall where you can enjoy shopping and looking around.
- Your hotel is called **Palace** Hotel and it is **placed** in the city centre.