Online Representation Learning in Recurrent Neural Language Models
Marek Rei
University of Cambridge

Language Modelling

- **Recurrent neural network language models** (RNNLM) are some of the best-performing language models (Chelba et al., 2014).
- We investigate a modification of RNNLM, which allows it to efficiently learn and adapt during testing.
- We extend the idea of Paragraph Vectors (Le and Mikolov, 2014) to RNNLMs and apply it directly to language modelling.
- The new model achieves lower perplexity with fewer parameters and fewer operations.

RNNLM

- RNNLM implementation based on Mikolov et al. (2011).
- The hidden layer from the previous time-step is used as input, creating a recurrent connection.
- Words are divided into larger classes to decrease the required computation in the output layer.
- Trained using backpropagation through time on complete sentences. Negative log-probability of the word sequence is used as the cost function.

RNNLM with online learning

- Introducing an additional document vector to represent the unit of text being processed.
- It has no inputs and is updated using backpropagation after each word.
- It gets initialised to a default state, which is also optimised during training.
- This vector is continuously updated during testing, while all other parameters remain static.
- The document vector is optimised to represent how the current text differs from the main language model.
- The word used for updating the document vector for the next time-step is also available in the next input layer, therefore the system receives no additional knowledge as input.

Experiments

- Evaluation performed on sentences from English Wikipedia. 10M words for training, 200K words for development, 4M words for testing.
- Vocabulary of 16,514 unique words (frequency ≥ 30), the rest replaced by the UNK tag.
- Increasing the document vector D gives a larger improvement, compared to increasing the hidden vector M by the same amount.

<table>
<thead>
<tr>
<th>Train PPL</th>
<th>Dev PPL</th>
<th>Test PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline M=100</td>
<td>92.65</td>
<td>103.56</td>
</tr>
<tr>
<td>M=120</td>
<td>88.60</td>
<td>98.78</td>
</tr>
<tr>
<td>M=100, D=20</td>
<td>87.28</td>
<td>95.36</td>
</tr>
<tr>
<td>M=135</td>
<td>85.17</td>
<td>96.33</td>
</tr>
<tr>
<td>M=100, D=35</td>
<td>80.11</td>
<td>91.05</td>
</tr>
</tbody>
</table>

Table 1: Perplexity when increasing either hidden vector M or document vector D.

- Parameters

 - Adding the document vector or increasing the hidden layer requires additional parameters and computation.
 - The document vector gives a larger improvement with a smaller number of parameters, compared to scaling the hidden vector.
 - The graph of perplexity with respect to additional operations in the model also has a very similar shape.

Conclusion

- The language model includes a separate vector to represent the unit of text, such as a sentence, being currently processed.
- The vector starts in a default state and is continuously updated using backpropagation.
- The modified language model achieves lower perplexity with a more optimal use of parameters and computation.

Example: finding other sentences with similar document vectors

Both Hufnagel and Marston also joined the long-standing technical death metal band Gorguts.

1 The band eventually went on to become the post-hardcore band Adair.
2 The band members originally came from different death metal bands, bonding over a common interest in d-beat.
3 The proceeds went towards a home studio, which enabled him to concentrate on his solo output and songs that were to become his debut mini-album ‘Feeding The Wolves’.