Marek Rei
Churchill College
CSTIT 2009

5.8 UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

MPhil in Computer Speech, Text and
Internet Technology: Dissertation

Adaptive Interactive Information Extraction

Author: Marek Rei
Supervisor: Prof Ted Briscoe

2009






Declaration of Originality

I, Marek Rei of Churchill College , being a candidate for M.Phil in Computer Speech,
Text and Internet Technology, hereby declare that this dissertation and the work
described in it are my own work, unaided except as may be specified below, and that

the dissertation does not contain material that has already been used to any substantial
extent for a comparable purpose.

Signed:
Date:

The word count for this dissertation: 14261

Acknowledgements

| would first of all like to thank Prof Ted Briscoe for suggesting the project idea and
providing me with excellent supervision and constant support.

Rebecca Watson for providing the initial baseline system and being very helpful with all
my questions.

Advaith Siddharthan for giving valuable feedback and ideas for the project.

Andreas Vlachos and Nikiforos Karamanis for constructing the synonym sets used in the
experiments.

Lise Gough for organising a wonderful MPhil course.

The Computer Laboratory and the Cambridge European Trust for giving me necessary
and much appreciated financial support.



Abstract

Traditional Information Extraction systems use prespecified questions
and manually constructed templates, encoding the mapping from text to
the template. In this thesis we describe an |IE system that uses an
adaptive approach, enabling new queries to be run without special
configuration. The system is meant to be used by domain specialists
who can indirectly specify the query. Several approaches are proposed
and tested to improve the quality of the results. Synonym expansion is
introduced to increase recall; grammatical patterns are used to highly
rank sentences that contain certain structures; the distance through
grammatical relations is measured to enable automatic scoring. Finally, a
system combining all of the approaches is put together and the results

presented.



Contents

Chapter One: INTrOAUCTION. ......coouiieeeee et 6
1.1 BACKGIOUNG. ...ttt ann e e e e eneeeees 6
L2 o PSP P P PRSPPI 7

Chapter TWO: ENVIFONMENT.........ooiiiiiieeee et nneas 8
P2 T I o =T o TSP PPRRRPPR 8
P2 [ gTo (=) (= To [ o T= o= = TSP OO PPPPPPPPPN 9
P2 T I =N (=T = Lo = SRS 12
P2 I 1o 0177 (I T= < T TSR 13

Chapter 3: The QUETY SYSTEM... ..o 15
3.1 BASEIINE...c e a e e e e 15
3.2 SYNONYM EXPANSION. .....eiiiitiieieeeitee et e et se e e st e s b e esse e e saeeesseeeseeeaneeeenneesreeennneeaans 17
R o= 11 (=] Yoo ¢ o T RSP 21
3.4 DiStANCE SCOMMNQ. .. eeiiiieieeiiiieeetiee et e et e st e e s et e e st e e e rase e e saabe e e e s s nnsreeeeeeeeeeeanas 26

Chapter 4: Evaluation Methods..........oouiiiiiiie et 29
= = U Tl 0 0 == ] (=TS 29
4.2 PrecCiSion-ReCall CUIVE.........oooeieeeee ettt 30
4.3 MAP (Mean average PreCiSiON)... .. . e eeeueeeieeeereeeseeeeieserieeesssee e s s s enseeeesesnseeaeenns 30
4.4 Precision, recall and F-measure CUIVES............ooooiieeeiieeeeeeeeeee e 31
4.5 LeXiCal VANANCE......eeeiiieieeeiiee ettt st e st e et e e st e e e s ae e e e e e e e e e annnnreeees 31
4.6 NUMDET Of NEW FESUIES......eiiiee e e e 32
4.7 Spearman's rank COrrelation...........cooieeiieiiieeee e 33

(07 g F=T o) (o Tl = o =Y 4= ) - SR 34
ST I € To] (o 1K 7= T To F= 1o SRR 34
T2 (=TT | S 37

5.2.1 BASEIINE...c e a e e e e e 37
5.2.2 SYNONYM EXPANSION. .....tiiiiiiiiiieitteeiee ettt se e sb e sne e nnee e e e 40
5.2.3 PAttern SCOMNQG.......ei it 43
5.2.4 DiStANCE SCOMNG...uetiiiueiiieitiieeetiee ettt et ee sttt et e e e e e s esbe e e s saseee s sseeeeeneeees 46

Chapter 6: Conclusion and FUture WOrK.........c.cooeeoiieiien e 52

[ T= (=T (=Y T =T 53

Appendix A: EXPress-Gene PatternS........ooo e iiiiiiieee e 55

Appendix B: Gene-CGID patterns. ..ot e 56



Chapter One: Introduction

1.1 Background

In this age of computer science and digital technology, text is the primary medium of
representing and transmitting information. There are already vast quantities of diverse
information available digitally and this amount is growing exponentially. IBM researchers
claim that by 2010 the amount of data in the world may double every 11 hours (Coles et
al., 2006). Aside from all the documents, homepages, forums, blogs and e-mails, even
books and research papers that were previously only available on paper are now being
systematically digitalised. This leaves us with the problem of navigating in the
abundance of data and finding relevant information fast and efficiently.

Traditional Information Extraction (IE) requires prespecified questions and manually
constructed templates which represent the structure of the targeted information and
encode the mapping from the text to the template. For instance, in genomics a template
might be 'express(gene, protein)' and the task would be to find all instances of this
template licensed by text in genomics papers, e.g. 'express(Fas-Il, interleukin)' would be
licensed by sentences like 'the gene Fas-Il was found by Winterbottom et al (2003) to
express interleukin'. The disadvantage of this approach is that it requires significant
manual work by |IE and domain experts to build each new system. (Briscoe, 2009)

Several researchers have investigated the IE problem in the biomedical domain. Most
work has been done to group genes and proteins by functional relationships — it is
believed that this can help in gene expression analysis and database annotation, both
very important in the genomic research (Raychaudhuri et al., 2002). Recent biomedical
IE systems generally include a step where natural language processing is used to
reduce text into a standard structure. These include systems using shallow parsing
(Leroy & Chen, 2002), full parsing (Yakushiji et al., 2001) and pattern matching
(Bunescu et al., 2005).

The rules needed to extract relevant information can be either hand-written or generated
using machine-learning (ML) techniques. Daraselia et al. used full parsing based on
context-free grammar and hand-written rules to extract mammalian protein functional
links with the precision of 91% and estimated recall at 30-50%. Their extraction rules
require much manual modification to apply to different kinds of information. Brunescu et
al. used machine learning techniques to construct extraction patterns based on text
fragments between participating entities. They reached 48% precision at 45% recall
when extracting protein-protein interactions.



From the current work it is clear that some types of information are easier to extract than
others and most of them present an unsolved problem. But IE in the biomedical domain
has numerous potential benefits and ongoing work is trying to find new and innovative
ways of making IE systems beneficial to biomedical researchers.

1.2 Aim

The aim of this project is to help develop a more flexible IE system. Instead of having
specialists construct the extraction patterns manually or generating specific ones from
large training sets, we focus on giving the user greater control over what kind of
information can be extracted.

The idea is that a user can specify the types of relationships they are interested in using
the interface. The selections are then expanded to better represent the information
need. An IE pattern is constructed based on this knowledge and a search is run on the
database of papers. Finally, the user is presented with a set of sentences that match the
required pattern or patterns and they can access the text passages around that area.
This kind of interactive system would be beneficial to researchers who are seeking
relevant papers for further reading or information relevant to specific hypotheses. Any
user can introduce a new unseen information need since it doesn't require any special
annotation or machine training. Basic design goals for the system are:

e Scalability. The system should be able to scale up and accommodate
significantly larger amounts of papers for future research.

e Precision and recall. This is a system meant to be used by researchers in the
biomedical domain, trying to find all the relevant information available. In contrast
to running a common search, where a user is satisfied if they find an answer
within the top ranking results, researchers using IE would generally be interested
in all the matches. Therefore we prioritise recall over precision, although a certain
level of precision must be maintained in order to guarantee user satisfaction.

e Speed. Since the system will be running complex searches over a large
database, some execution time will be needed. However, as long as the system
is usable as an interactive application, the time needed will still be far less than
what it would be using traditional methods. At least for the first versions of the
system time will not be a factor.

e User interface. The methods of communicating to the system need to be fairly
simple and not require any knowledge of IE patterns, semantics or computer
programming. It is meant for use by domain experts, not computer scientists, and
they should be able to specify the search patterns indirectly.



Chapter Two: Environment

2.1 Lucene

Lucene (Goetz, 2000) is an open source indexing and information retrieval library,
originally created in Java by Doug Cutting. At the core of Lucene's logical architecture is
the idea of a document containing fields of text. This flexibility allows Lucene's API to be
independent of the file format. Text from PDFs, HTML, Microsoft Word, and
OpenDocument documents, as well as many others can all be indexed so long as their
textual information can be extracted. Lucene has been shown to scale up efficiently and
handle large amounts of queries (Gospodnetic & Hatcher, 2005).

In order to use Lucene for searching, the data needs to be indexed — processed into a
highly efficient cross-reference lookup in order to facilitate rapid searching processes.
Analysis is performed when indexing, splitting the text up into tokens, removing
whitespaces, converting words to lowercase and performing stemming.

For example, the following sentence

It's also relatively well established that Rel proteins are expressed in the CNS
of mammals.

will be indexed as

[it] [is] [also] [rel] [well] [establish] [that]
[Rel] [protein] [ar] [express] [in] [the] [cn] [of]
[mammal] [.]

When searching, the index is used to find documents that match a criteria. The same
kind of analysis has to be performed on the search keywords as was used when doing
the original indexing. As the randomly chosen example above showed, stemming isn't
perfect and can sometimes return unexpected results. Using the same analyser will
make sure that the same words get reduced to the same stems and different
morphological forms of the same word get a match when searching.

To perform a search, we have to formulate a query in terms of values in specific fields.
The following query means that we are looking for documents that contain both adapt
and interact in their llem fields.

+1llem:adapt +1llem:interact

Lucene also returns a score for each document, based on how well it matches the



query. We can control how that score is calculated and therefore also manipulate the
ranking process. The following query gives 4 times more weight to the lemma
interact being present in the llem field:

+1lem:adapt +(llem:interact) "4

To speed up complex queries, filters are used. A simple filter query is constructed and it
is run on the entire set of documents, getting a yes/no match. Next, the complex main
query is run only on the documents that matched the filter, giving the final score for each
result. This is designed to speed up the process since the scoring is only performed on
a subset of the whole database. For example, for a main query that tries to find Rel
translocation cases, where Rel is a gene

+gn:Rel +grb:transloc-rel

we would first use a filter query that checks if the lemmas rel and transloc are
present.

+llem:rel +llem:transloc

2.2 Indexed papers

The index used in this project was generated over 5000 biomedical papers from the
FlyBase (Tweedie et al., 2009) collection. The original papers were first either
scanned or converted to XML. Because papers were scanned and OCR (Optical
Character Recognition) was used without manual checking, some of them still contain
errors like false character recognition, Greek characters instead of Latin ones,
hyphenation splitting the word etc. This will impact the precision of the final system but
is a faster and more labor-effective way of inputting papers to the system compared to
manual work.

Next, the RASP (Robust Accurate Statistical Parsing (Briscoe et al., 2006)) toolkit was

used to do sentence boundary detection, tokenisation, PoS tagging, morphological
analysis and to find grammatical relations (GR) within the text (Briscoe et al., 2008).

Raw text

Tokeniser — PoS Tagger | Morph Analyser — Parser/Grammar | Parse Ranking Model

Full parse

Figure 1: RASP Pipeline

9



Figure 1 shows the module sequence of the RASP pipeline. The relations from n-best
parses are used, where n is currently 5.

Instead of indexing as whole documents, each sentence is added to the index
independently. This enables us to search on sentence-level and retrieve very precise
results. The index uses 12 fields to hold information about each sentence.

Field Sample value Explanation

abs Exon 18 of the muscle myosin [...] Article abstract

aid FBrf0106660 Article ID

gn Wg Genes

grb result-in Grammatical relations
ars {gs:{Ln:51,Gn:36,L:[["three", [...] Lemmas and relations
jid Genetics:151.1 Journal ID

llem protein Lemmas

pid FBrf0106660-1 Paragraph ID

said FBrf0106660 Article ID

sid 5261 Sentence ID

tit The Role of Evolutionarily [...] Article title

yop 1999 Year of publication

Table 1: Fields in the Lucene index

The information about each lemma and relation in a sentence is held in the grs field. For
a lemma, an entry has the structure

[luclem, fword, affix, pos, “G”/”7”, “U”]

Luclem is the stem for the word; fword is the full word in an unaltered form, only if it
differs from luclem; affix gives the appropriate affix; pos holds the part-of-speech; G
marks if the word is a gene name. For example

["we", "We","_","PPIS2","","U"]

[ "gener" ’ "generated" ’ "ed" ’ "vvD" ’ nn ’ "U"]

["transgen", "transgenic","_","JJ","","u"]
["f1i","flies","s","NN2", "", "U"]

The order of lemmas also uniquely determines their ID numbers. These are used to
represent grammatical relations between lemmas.

10



The structure for a GR:
[gr-type, gr-head, gr-dep, gr-subtype, gr-init]

For example

[lOI 7! 3! Ol_l]
[19/ 7/ 9/ 31_1]
[201117111_1]

The last line represents a relation of type 20 where lemma number 1 is the head and
lemma number 7 the dependent. The sets of unique gr-type and gr-subtype values
(unique values given a current grammar) seen during indexing are mapped to integer
values. The lemma ID in a relation may also be a negative number, in which case it
represents a mapping to a non-lemma slot value — it would correspond to a value like
that, to, etc.

Luke (Figure 2) is a development and diagnostics tool used to access an existing
Lucene index. It enables to execute various manually constructed queries on the
database and examine the returned results.

i Luke - Lucene Index Toolbox, v 0.9.1 (2008-11-22) =

File Tools 3ettings Help
é Overview| [ Documents QSearch ‘mFiIés“ <= Plugins

Enter search expression here: Analysis | QueryParser | Similarity| HitCollector|

gri:show-in | Analyzer to use for query parsing:
NOTE: use fully-qualified class name here. Default field: |
|org.apache. lucene.analysis. KeywordAnalkyzer |+ |labs -

Optiohal canstructar argument:

Query details:  [Update | [ Ecplain structure |

'grb:show—in Parsed
R_ewritte_n
|2) Search

Results: (Hint: Double-click an results to display all fields) [ é Explain | E:DEIEIE- TeT2 doc(s) .0—19 & '-ib
[#  lscore |Doc g Jabs laidlon lore [ors [id llem Ipig said [sicy it

2129065 1048341 ) | fg=fln:24,Gn FEMO174457-44 FBO174457 1044319 |

A3 9065 1195785 {as:{Ln:1%,Gn FBAO17972E8-35 FBHOL179728 1191174

412.42832 22991 {gs:fLn:41,Gn FEO111z25-58 FErfOL11229 22812

5124382 180939 {gs:{Ln:17,Gn FBf0120121-12 FEMf0O120131 180298

El2.4282 121821 {gs:{Ln:1&,Gn FEMO131264-37 FEMOLlZ1264 191134

7l2.4382 188317 {g=:{Ln:21,Gn FBAO121282-28 FEHO121283 147606

Bl2. 4382 203748 {gs{Ln:17,Gn FEMO132136-26& FEMO122136 203017 E |
= - : 4

Inclex name: /auto/grou.../ 1E/ MPhil, flybase-index-0-0 () |
Figure 2: Luke showing search results

i

The index size for 5000 indexed papers containing 1417816 sentences is 2.2GB.

11



2.3 The interface

iLexIR www FBrf0111773 ( sHow INFO=>=
FlySearch (1999)
The sequence analysis of the 5 9 -flanking region of the Adh gene <MORE= CONTEXT==
indicates a single promoter and shows stretches of high similarity with cis
Sea -acting elements responsible for the expression of Adh in Drosophila
melanogaster .
I 3 express Adh (14447) X We also identified some of the elements upstream of the promoter of D. <MORE= CONTEXT=>
funebris Adh , such as GATA and Adf-7 binding sites , necessary for the
B 2 Adh(a13) i expression of Adh from the proximal promoter in different species of
Drosophila .
Should this effect apply to the Adh region of D. funebris , a higher K s <MORE= CONTEXT==

value and a low codon bias would be expected and might be related to the
the Adh location rather than to the level of gene expression .

FBrf0123061 SHOW INFO>>
(1999)
m Larval movement was visualized using a Fujinon TV / Strains Df(2L)64] , <MORE= CONTEXT=>
Adh n1 L 2 Df(2L)b87e25 Df{2L)b80c1,b80c1 noc Sco In(2LR)b81a2
In(2L)b81I7 Df(2L)b81a2 L AS0 R , cn bw Df(2L)b84a8 , pr pk cn sp
In(2L)b82c44 Df(2L )b85b2 Df{2L jb&&ih‘? In{2L)b83b22 In(2L )b79h1A
b tam 2 Adh n4 b tam 3 Adh n4 b tam 4 Adh n2 prcn tam 9 kuz 3
1(2)34Db3 b1 Adh n2pr 1cn 11(2)Sop2 1 Adh D pr 1 ¢cn 1 in(2LR)Gla
, Gla I(2)34De 2 b I{2)34Df 2 el rd s pren b I(2)34Dg 1 Adh n4 b Sos
Sort by: Score Article 34Ea 6 Adhn4
Score Year of Pub.
Search Terms:

FBrf0111478 ( sHOw INFO==

express adh (1999)

Inctaad wa caa that radan hiae in tha lneavnracead  allamadhe lace 7 aan - P e an

Flgure 3: FlySearch user interface

FlySearch (Figure 3) is the user interface for running and constructing queries for the
sentences in the indexed papers.

As the first step, the user performs a simple keyword search, for example “express Adh”.
This would return all sentences that contain the words express and Adh. The green
color coding indicates recognised gene names, the blue words show the entered
keywords in results.

Next, the user can select specific words in the returned sentences to indirectly specify a
relationship. Clicking on a word will select it, indicated by underlining of the word. In the
image above, the words “expression of Adh” are selected. Clicking on <MORE> will
construct a new query and return sentences where express and Adh are semantically
related in the same or similar way as selected. Every sentence is scored, based on how
well it matches the query, the score is shown next to each result. Consecutive matches
from the same paper are grouped together.

Clicking SHOW INFO displays information about the paper (title, abstract, journal ID);
CONTEXT will reveal text preceding and following that specific sentence. This interface is
designed for use by domain specialists — someone who knows what kind of information
they are looking for but is not experienced in constructing complex queries manually. A
researcher might want to find information on certain genes or proteins interacting, in
which case they first perform a keyword search, followed by a more specific gr-search.

12



That would return ranked matching sentences and the user can access text paragraphs
around them to gather more information.

2.3 Synonym sets

For some of the experiments in this project, synonyms of various words were needed.
Common databases like WordNet (Al-Halimi, 1998) do not apply very well to biomedical
papers, therefore specific synonym sets related to genomic research were used.

The first is a set of gene and protein synonyms put together by Nikiforos Karamanis
from the FlyBase database. It contains lists with the following structure:

19 | Adh | FBgn0O000055 | ADH

1 | Adh | FBgn0000055 | Alcohol dehydrogenase

2 | Adh | FBgn0000055 | BG:DS01486.8

1 | Adh | FBgn0000055 | CG32954

1 | Adh | FBgn0000055 | CG3481

1 | Adh | FBgn0000055 | DmADH

1 | Adh | FBgn0000055 | Dreg-1

1 | Adh | FBgn0000055 | Drosophila Rhythmically
expressed gene 1

1 | Adh | FBgn0000055 | T1l6

5 | Adh | FBgn0000055 | adh

1 | Adh | FBgn0000055 | alcohol dehydrogenase

1 | Adh | FBgn0000055 | dADH

Each line corresponds to one synonym. The number in the first column shows the
frequency of that specific name; second column specifies a common name for that
gene/protein; third column contains a FlyBase gene identifier; the last column contains a
name for that gene.

The second set is a collection of trigger words related to different types of biological
events and was created by Andreas Vlachos. A fragment of the collection:

bind Binding
interact Binding
crosslink Binding
associate Binding
ligate Binding
recognize Binding
engage Binding
induce Positive_regulation

13



activate Positive_regulation
increase Positive_regulation

The first column contains a verb; the second column holds an event identifier, defined by
the BioNLPO9 (Tsuijii, 2009) shared task.

These two synonym sets were used during development and evaluation to enable query
expansion. Other similar sets could be used to replace or extend the current collections.

14



Chapter 3: The Query System

3.1 Baseline

The interface sends a query to the search system. The following parameters are passed
along:

e The name/location of the Lucene index that will be used for the query.

e The ID of the sentence that contains the selected lemmas and will be used for
constructing the query.

e The IDs of lemmas that were selected.
e Hit size, the number of results that should be returned (on one page).
e Page number.

These get to the class RunMphilQuery which runs the query with both the baseline
system and an alternative system using some kind of an improvement. The evaluation is
also run on both sets and against each other, comparing them and finding the
correlation.

To construct a query for retrieving results from the Lucene index, two query strings
using the Lucene syntax have to be constructed — query filter, used for getting the
initial subset of the index, and query gr, that is used for scoring. The system also
constructs two additional strings, display gr and display text, that are designed to give
feedback to the user about the query.

Sample values, when selecting the lemmas Adh and express in a sentence (the query
explained in more detail in 4.1):

query_filter: +1lem:Adh gn:Adh”2 +1llem:express

query_gr: gn:Adh”2 grb:"express-Adh""8

display_text: Adh GENE: [Adh] expressed

display_gr: GR: expressed-->Adh Adh GENE: [Adh]
expressed

To construct the filter query, the baseline system goes through every selected lemma
and adds it to the string. This results in a bag-of-words search that returns all sentences
that contain all the selected lemmas. Having a selected gene also tagged as a gene in
the candidate sentence is an option but not a requirement.

The GR query is run only on the sentences that first satisfy the filter query so it does not
necessarily contain all the lemmas used in the original query. Instead, it specifies

15



conditions that will assign a higher score to a result. In the example above a sentence is
scored high if the selected gene is tagged as a gene. It is scored even higher if it
contains the relation that was selected by the user, in this case express—-Adh. To
construct it, the system goes through every relation in the query sentence, finding ones
that have both their head and dependent lemmas selected and adding them to the
query string along with selected lemmas that are tagged as genes. If there are no GR
relations that have both their lemmas selected, therefore no selected relations, the
system falls back and uses the filter query for scoring also.

The filter and gr queries are run using the Lucene API. This enables to also specify a
class that goes through all the returned results after scoring and rescores them using its
own rules. This is useful since we can examine each specific sentence in various ways
and assign a score based on what it contains or how similar it is to the original query.

The baseline system uses MphilGRSMatch class for the rescoring process. It gets the
grammatical relations and the original score of a sentence and returns a new score
value. The new score is calculated using the following algorithm:

—

Initialise the new score with 10% of the original score.
Go through each selected GR in the original query sentence.
Go through each GR in the candidate sentence that is being rescored.
Calculate head_score, dep_score and type_score for each GR pair.

Add (head score * dep_score * type_score) to the new score.

o o p W N

Return the new score.

Head_score is calculated by looking at the head lemmas of both relations. If they match,
it is set to 1.0; otherwise 0.0. Dep_score is calculated in the same way by looking at the
lemmas of GR dependents, returning either 1.0 or 0.0. Type_score is found by looking at
the types of both GRs — if they match, it gets the value 1.0, otherwise 0.5.

The total value added to the new score is the multiplication of these three scores,
resulting in three different cases:

e 1.0 if both lemmas and the GR types match exactly.

e 0.5if both lemmas match but the GR type does not.

e 0.0 if one or both of the lemmas does not match.

By adding together these values for each selected relation, the system calculated the
new score for a sentence. This is then used to reorder the result set which is then

16



presented to the user. The baseline system returns sentences that contain exactly what
the user selected — containing the same lemmas and raking highly results that have the
same type of grammatical relations. This means a system with quite high precision but
limited set of results — we would like to find all the sentences that satisfy the information
need, not only the ones that are identical to the users query. The following
improvements try to increase the recall of the system and introduce variability into the
results.

3.2 Synonym expansion

When searching for sentences that contain information about the expression of Adh, a
typical user query passed to the system would be in the form of a relation express-
Adh. The three highest ranking results from the baseline system are:

- Adh is not expressed in the developing embryo , and we find no difference in
the hatching times among our four different transformant types ( Tables 1
and2 ) .

- Specifically , we investigate whether the disruption of a conserved short-
range pairing within Adh exon 2 has an effect on Adh expression or if there is
a dual functional role of a conserved sequence in the 3\'-UTR in both long-
range pairing and the negative regulation of Adh expression .

- This is expected , however , because Adh is not expressed in pupae
( CO~SIN and MANIATI~ 1989 ) .

The first result in the set is the same that was used to construct the query. The second
and third are very similar when looking at the lemmas and relations between the gene
and the verb. The other 149 results follow roughly the same pattern. Because of this, the
returned sentences have a fairly high probability of containing information about Adh
expression. The system achieves high precision but, as stated in the project goals, we
are more interested in high recall - finding all relevant results while still maintaining a
user-friendly precision level.

One way of expanding the query and introducing variance is to use synonyms. Very
often lemmas can be replaced by others with very similar meaning, resulting in new
queries that still represent the same information need.

The verb express in the example query represent the general gene expression action
and can therefore be replaced by verbs from the following set:

express, overexpress, produce, detect, transfect,
coexpress, synthesize

17



The biomedical literature does not follow a fixed naming schema for genes and the
same gene can be referred to in different ways. This leads to an entire new problem of
finding all the different names for any gene. This is tackled by researchers working on
extracting biomedical synonyms and it has proven to be a challenging problem.
However, work is being undertaken to standardise the use of official gene and protein
names and symbols, so the problem may lessen in the future (Cohen & Hersh, 2004).
For this project we can use a generated list of genes and their synonyms. According to
the list, gene Adh can be referred to using any of the following names:

Adh, ADH, Alcohol dehydrogenase, BG:DS01486.8,
CG32954, CG3481, DmADH, Dreg-1, Drosophila
Rhythmically expressed gene 1, T1l6, adh, alcohol
dehydrogenase, dADH, Daril\Adhl, Adh-1, Daril\Adh2,
Adh-2, Dbuz\Adhl, Dbuz\Adh2, Dere\Adh, Dhyd\Adhl,
Alcohol dehydrogenase-1, Dhyd\Adh2, Alcohol
dehydrogenase-2, Dlac\Adhl, Dmaul\Adh, Dmic\Adh, Dmoj\
Adh2, Dnep\Adh, Dore\Adh, Dpse\Adh, DpADH, Dsec\Adh,
Dsim\Adh, ADH-sim, Dsub\Adh, Dsub\Adh-Psil, Dteil\Adh,
Dvir\Adhl, Dvir\Adh, Dvir\Adh2, Dyak\Adh

Introducing synonyms means large modifications to nearly every part of the original
system. The filter and GR query construction, rescoring and evaluation modules all have
to understand that synonyms are merely different representations of the same word. For
this purpose the MphilQueryExpander class was created so that it can dispense
synonyms to other parts of the system as needed. It reads in all the synonyms and
keeps them in memory. When another module makes a call, it returns the set of words
that mean the same thing and are also of the same type (eg gene or verb).

To construct the filter query, we first loop through all the selected lemmas of the original
sentence. Instead of demanding that this one lemma is present, at least one of the
synonyms now has to be contained in the candidate sentence. This is made more
difficult by the fact that synonyms can be composites of several words and cannot be
directly used as a lemma value. To count as a match, all of these words would have to
be in a sequence at the same time. The algorithm for constructing the filter query
becomes:

1. For every selected lemma in the original sentence.

2 For every synonym of that lemma, one of them has to be present.
3. For every word in a synonym
4

All words have to be present

18



The filter query for the baseline system (seen in 2.1) contained only two lemmas. The
same filter query after applying all the synonyms and escaping special characters

becomes:

+(

)

(+1lem:
(+1llem:
(+1llem:
(+1lem:
(+1llem:

Adh) (+1llem:ADH)

Alcohol +1llem:dehydrogenase)
BG\:DS01486.8) (+1lem:CG32954)
CG3481) (+1llem:DmADH) (+llem:Dreg\-1)
Drosophila +llem:Rhythmically

+llem:expressed +llem:gene +llem:1)

(+1llem:
(+1lem:
(+1lem:
(+1llem:
(+1llem:
(+1llem:
(+1lem:
(+1llem:
(+1llem:
(+1lem:
(+1llem:
(+1llem:
(+1llem:
(+1lem:
(+1lem:
(+1llem:
(+1llem:
(+1llem:

(+1llem:
(+1llem:
(+1lem:

T16 ) (+1llem:adh)

alcohol +llem:dehydrogenase) (+1llem:dADH)
Dari\\Adhl) (+llem:Adh\-1)

Dari\\Adh2) (+1lem:Adh\-2 )

Dbuz\\Adhl) (+1llem:Dbuz\\Adh2)

Dere\\Adh) (+llem:Dhyd\\Adhl)

Alcohol +llem:dehydrogenase\-1)
Dhyd\\Adh2)

Alcohol +llem:dehydrogenase\-2)

Dlac\\Adhl) (+llem:Dmaul\\Adh)
Dmic\\Adh) (+1llem:Dmoj\\Adh2)
Dnep\\Adh) (+1llem:Dore\\Adh)
Dpse\\Adh) (+1llem:DpADH) (+1llem:Dsec\\Adh)
Dsim\\Adh) (+llem:ADH\-sim)
Dsub\\Adh) (+llem:Dsub\\Adh\-Psil)
Dtei\\Adh) (+llem:Dvir\\Adhl)
Dvir\\Adh) (+llem:Dvir\\Adh2)
Dyak\\Adh)

express) (+llem:overexpress)
produce) (+llem:transfect)
coexpress) (+llem:synthesize)

Depending on the query and the synonyms used, this kind of expansion can make the
system return a much larger set of sentences.

The next step is to construct a GR query using the synonyms. This will mainly contain
lemma pairs denoting the possible relations - using the sample case, these are verb-
gene (express—Adh) relations. Since both the verb and the gene part of this pair can
be expanded using synonyms, the set of new relations will be the Cartesian product of
both synonym sets, constructed by associating every element of the first set with every

19



element of the second set. Proportionally higher weights are assigned to lemmas that
represent genes and to relations that contain lemmas which were selected in the original
sentence. The algorithm for building the GR query becomes:
1. For every selected lemma in the original sentence that was also a gene
For every synonym of that gene, assign weight 2
For every word of that gene, all have to be present

. For every selected relation in the original sentence

2

3

4

5. For every synonym of the head lemma

6 For every synonym of the dependent lemma

7 Assign weight 4 if both lemmas were also in the original sentence
8 Assign weight 2 is one lemma was present in the original sentence
9

Otherwise assign weight 1 to the relation

10. For every word in head lemma synonym
11. For every word in dependent lemma synonym
12. All words have to be present

The original GR query can be seen in 2.1. The full expanded query is too long to be
printed here but a few fragments from it:

( tgn:Adh )"2 ( +gn:ADH )"2
( +gn:Alcohol +gn:dehydrogenase )"2
( +gn:BG\:DS01486.8 )"2 ( +gn:CG32954 )2
( +gn:CG3481 ) "2
[ .
(+ (grb:express—Adh) )"4 (+(grb:express—ADH) )"2
(+ (grb:express—Alcohol)
+ (grb:express—dehydrogenase) ) "2
(+ (grb:express-BG\:DS01486.8) ) "2
(+ (grb:express-CG32954) )"2
[...]
(+ (grb:overexpress—ADH) )" 1
(+ (grb:overexpress—Alcohol)
+ (grb:overexpress—dehydrogenase) )"1
(+ (grb:overexpress-BG\:DS01486.8) )"1
(+ (grb:overexpress-CG32954) )"1

20



-]

+ (grb:coexpress-Dari\\Adh2) )"1

+ (grb:coexpress—-Adh\-2) )"1

+ (grb:coexpress-Dbuz\\Adhl) )"1
. ]

. .

The rescoring algorithm also needs to adjust to using synonyms. To get a recalculated
score for lemmas, we count the number of words in the candidate sentence that match
exactly or are synonyms to any of the selected lemmas in the original sentence. The
possibility of synonyms containing multiple words also has to be taken into account.

1. For each selected lemma in the original sentence
For each synonym of the selected lemma

For each word in the synonym

2

3

4. For each lemma in the candidate sentence

5 If there is a word sequence matching the synonym
6

Add 1 to the lemma matching score

Furthermore, to score the relations, the system needs to understand that any lemma
present in a selected relation from the original sentence could be replaced by synonyms
possibly containing multiple words. The algorithm goes through every selected relation,
looks at the head lemma and tries to find a matching lemma from the candidate
sentence. If successful, it looks for a relation that connects that lemma to another
lemma which can be mapped to the dependent of the original selected relation.

3.3 Pattern scoring

When the set of results has been assembled by the filter query and the GR query, we
would like to order them so that the most likely ones end up on top. One way of doing
this is to rank them using patterns.

When looking through sentences, there are certain structures that convey the same idea
in different ways. These can be either syntactic, a set of grammatical relations or both
and we refer to them as patterns. If the system can identify sentences matching these
patterns, it can assign them a higher score and therefore boost their ranking, giving the
user more precision in the top end. Patterns can be constructed to be very general or
very specific, depending on the need.

To construct patterns we first have to understand the various ways of how the data can

21



be represented. We are going to use the example of a development query concerning
the expression of Adh and show fragments from sentences that contain the kind of
information the system would want to find. Arrows indicate relations between lemmas in
the sentence and point from the head lemma to the dependent lemma. There can be
several relations between the same two lemmas, in which case they are of a different

YN A R

Adh is not expressed in the developing embryo

Figure 4: Example express-Adh relations, type 1

In Figure 4 Adh and expressed are connected with two relations where expressed is
the head and Adh is the dependent. It shows that they are immediately connected even
though they are not positioned together in the sequence of words. The two relations are
of type passive and ncsubj (indicating that Adh is the non-clausal subject of express).
When searching for sentences about Adh expression, this is something that the baseline
system finds very well. But we are also interested in sentences that contain significantly
more complex relations or word sequences that still mean roughly the same thing. A few
more common structures in the data:

T N\

Adh is definitely expressed in

Figure 5: Express-Adh relations, type 2

AV NN

The Adh gene is expressed from

Figure 6: Express-Adh relations, type 3

NN SN

The expression of the Drosophilia alcohol dehydrogenase
Figure 7: Express-Adh relations, type 4
22



Ny

Expression of both Adh and Adhr

Figure 8: Express-Adh relations, type 5

~ TR

The expression of the Adh gene

Figure 9: Express-Adh relations, type 6

The next step is to find common themes in these sets of relations and construct patterns
based on them. One thing that stands out is that there are various ways of referring to
the gene Adh, even without synonyms. Type 2 shows that in the case of “Adh is
expressed’ Adh is directly attached to express as the subject. In type 3 the sentence
structure is very similar (passive) but Adh is referred to as “Adh gene”. This results in
gene being the subject to express and Adh becomes the modifier for gene. A similar
problem comes up with types 4 and 5, where expression-of connects either directly
to the gene (type 4) or first to the conjunction and and then to the gene (type 5).

This issue can come up with any other structure and to solve it we split the pattern into
two and refer to TARGET as anything that marks the target gene. For example, this can
be

1. The gene name itself: Adh
Any part of a gene name with multiple lemmas: dehydrogenase
Lemma gene that has a gene name as a modifier: gene ---> Adh

Lemma protein that has a gene name as a modifier: protein —---> Adh

o & 0N

Lemma and that connects to a gene as a conjunction: and ---> Adh

Pattern types 1, 2 and 3 can be combined to construct a pattern for passive sentence
structures. The lemma express has to be in a direct relation to the TARGET and the
relation type has to be ncsubj (non-clausal subject). For the system the first pattern
would look like this:

express —-ncsubj-> TARGET (P1)

23



Relation types 4, 5 and 6 give the second pattern type:

express —iobj—> of —-dobj-> TARGET (P2)

Nominalisation is another way to change the sentence structure. Instead of the verb to
express the author can use the noun expression instead. In the case of express
both of these words have the same lemmas so the queries do not have to be changed
to return sentences using nominalisation. This is not true for all words and for more
complex cases a database of nominalisation possibilities could be integrated to the
system. For this case we look at the following examples:

Adh expression is first detected

Figure 10: Example express-Adh relations, type 7

TR

Higher levels of Adh protein expression

Figure 11: Express-Adh relations, type 8

VTN

The Adh spatial expression pattern

Figure 12: Express-Adh relations, type 9

In all of these cases the gene name is connected to express with a single relation, in
which express is the head. But unlike pattern 1, the relation type specifies that Adh is
the modifier for express. The final pattern to match all these three cases becomes:

express —-ncmod-> TARGET (P3)

In figure 13 the sentence talks about the gene, not the process of expression. Note that
in this case express is the modifier to gene, in contrast to the previous pattern.

24



Depending on the needs of the user we still might want to include it in the set of results
since it references the correct process and contains relevant information. But patterns
can also be used to identify sentences with the wrong structure. When the users decide
they do not want results that contain the type of information in figure 13, the pattern can
be used to lower the score for sentences that match to it.

Y A

The highly expressed Adh gene

Figure 13: Express-Adh relations, type 10

The resulting pattern would be:
express <-ncmod—- TARGET (P4)

The final patterns are used in the rescoring stage. Every sentence gets compared to
every pattern and if a match is discovered, the sentence receives a higher score. When
using this technique, we also have greater influence over the order of the results. If, for
example, we prefer sentences with the passive structure, the system can assign a
higher score to the sentences that match that specific pattern, while giving medium
scores to other results.

To learn more about what kind of patterns are present in the 1417816 sentences, an
independent pattern finder was written for this project. Its purpose was to locate and
group patterns in the relation trees between certain endpoints. For the first experiment,
the goal was to find all cases where the lemma express is connected to any gene. The
pattern finder goes through all the sentences and first marks lemmas that qualify as the
first or last point in the path. In this experiment, the starting nodes would be words with
express as the lemma and the last nodes would be gene names. Lemmas that mark
gene names are already identified in the index and this information was used.

Next, the system starts with every lemma that qualifies as a starting point and tries to
find the closest legal endpoint, forming a path through relations. The connection finding
function is called for each starting lemma with two possible cases:

1. There is a direct relation between the lemma and a legal endpoint, in which case
the function stops and returns a complete path.

2. No relation to a legal endpoint is found, in which case the function is called
recursively for every lemma that it does have a direct relation to.

25



Since this number of recursive function calls increases exponentially, the limit of 5
relations or 6 lemmas was introduced. This decreased the time needed to run the
pattern finder and connections with more than 5 links are unlikely to have relevant
meaning for our purposes.

When grouping, the relation types were discarded to give a better overview of the
different types on connections. The direction of the head-dependent relation is still
relevant and indicated by the pointing arrow. Gene names are replaced by generic
tokens. The five most common patterns in the corpus:

1l: express ———> [::GENE::]

2: express ———> of ———> [::GENE::]

3: express <——— and ———> [::GENE::]

4: express ———> and ———> [::GENE: :]

5: express ———> [::GENE::] ———> [::GENE::]

Appendix A shows a larger number of top patterns that were collected using this
method. Many of these machine-collected patterns can be mapped to our hand-
constructed versions, especially when using the TARGET functionality (above). For
example, when looking at the top 15 collected patterns, ranks 1, 4, 11 and 12 correspond
to P1; ranks 2, 6 and 7 correspond to P3; ranks 3 and 13 correspond to P4. Ranks 5
and 8 stand out since they connect gene names to other gene names. It is unknown if
both of these lemmas are different parts of the same gene name or they are really
different genes in relation with each other, therefore those patterns do not directly map
back to our versions.

The results from the pattern finder indicate that our four patterns are a good
representation of the available data. Experiments will show how well this technique
performs. Even though these patterns were assembled manually, machine learning
could be used to cluster together automatically extracted patterns that are found to
convey the same or similar meaning, giving a much wider flexibility and better efficiency.

3.4 Distance scoring

Putting together a suitable set of patterns demands important resources. If it is done
manually, domain experts with sufficient linguistic knowledge need to construct patterns
that match all the sensible cases that might come up. Even then the data will most likely
contain sentences that are relevant to the query but do not match a single pattern.
Using machine learning is a more efficient approach but will probably result in smaller
precision and an annotated training set is still needed to develop the system. These
problems are enough motivation to try an automated approach that does not involve a
learning process.

26



Every sentence contains a set of directed relations, each connecting two lemmas. When
moving through these relations, we can construct a path between lemmas that are not
immediately connected. The assumption we make for this scoring method is that if two
relevant lemmas have a short distance between them, the sentence as a whole is more
relevant and should therefore receive a higher score. By looking at the relationships
between lemmas instead of the word sequence the system can easily find connections
between words from opposite ends of a sentence. This also means we rely more heavily
on the parser and if there is a mistake in the set of relations, either a missing or an
unwanted connection, the system is likely to make the wrong conclusion.

As an example of distance-based scoring, the following sentence does not match any
patterns proposed in 3.3:

-First , the types of synonymous changes were deliberately selected to
maximize the probability of observing an effect : Adh is one of the most highly
expressed genes , and exhibits some of the highest levels of codon bias , in the
Drosophila genome .

When looking at a section of this sentence (Figure 14), it is clear that there is a
continuous path between the lemmas express and Adh. This connection is too specific
to be added as a pattern but the system should still be able to understand that it is a
relevant sentence.

YN Y Ny ey

Adh is one of the most highly expressed genes

Figure 14: Example of a path through the set of relations

The following algorithm is used to score each sentence:

1. For every selected relation in the original sentence

2 Locate lemmas in the candidate sentence that match the head

3 Locate lemmas in the candidate sentence that match the dependent
4. For every lemma that matches the head
5

Score the path between the lemma and the closest lemma that
matches the dependent

The path from one lemma to another is found recursively. The scoring function is called
with a single starting point and a set of potential endpoints. If there is a direct connection
between the starting lemma and any legal endpoint, the function finishes and returns 1

27



as a score. Otherwise, it calls itself and uses every directly connected lemma as the
new starting point. Any jump that doesn't lead directly to the endpoint gets a penalty of
multiplying the score with 0.9. Jump limit of 5 was introduced since lemmas that are
more that 5 jumps apart are unlikely to be related in a way that is useful for this task.

In schema 11 there are two possible routes between express and Adh:
expressed <-—-- genes <-——- of <-—- one <-—- is —-—--> Adh
expressed <--- most <-—-- of <-—-- one <-—-- is ---> Adh
In either case the distance between the lemmas is 5 jumps so the new score would be:
0.9%0.9%x0.9%x0.9%x1=0.6561

As the example shows, the searching process can move through relations in either
directions are doesn't pay attention to what kind of lemmas it passes. This means that
when the conditions are right it can easily jump to a “main” lemma in the sentence that
has direct connections to many other lemmas. Using this, the algorithm can assign high
scores to sentences that do not contain a suitable relation. Another problem comes up
with sentences that do not have a complete parse — some sentences in the data have
clusters of relations for different parts of the sentence but no relations connecting them
all together to a single tree. There is no way to overcome this and the algorithm fails. But
in general it is an easily implemented approach that does not require any training data,
manual annotation or pattern construction.

28



Chapter 4: Evaluation Methods

Evaluating this kind of information extraction is not straightforward, even with a good
test set. Simple measures like precision and recall are important but do not give all the
information needed. Aside from the amount of correct results we would also like to know
where they are positioned in the ranking, how that set differs from those returned by the
other versions of the system etc. Therefore we propose various measures that can be
calculated for each of the result sets, giving a thorough overview of the sets properties
and differences.

4.1 Basic measures

Number of retrieved results - The total number of results returned by the system. This
value can be expected to increase when synonyms are introduced, because the
constructed query matches a larger number of sentences.

Relevant items retrieved - The number of retrieved results that belong to the gold
standard. Increasing this value shows that our system is finding new unseen sentences.
The inclusion of synonyms can be expected to help return at least some relevant items
that weren't present in the set acquired by the baseline system.

Precision - Shows the portion of retrieved items that belong to the gold standard. This
value can be expected to decrease since the expanded query is less specific and will
return more irrelevant documents.

Relevant items retrieved
ltems retrieved

Precision=

Recall - Shows the portion of all relevant items that were actually retrieved by the
system. This will usually increase since the use of synonyms will help return results that
could not be found with the old query.

Relevant items retrieved
All relevant items

Recall =

F measure - A harmonic mean of precision and recall, providing a single measure that
combines them both. The balanced F measure weighs precision and recall equally.

_(1+p°) - Precision - Recall _2- Precision - Recall

=" g2 Precision + Recall =1 Precision + Recall

29



4.2 Precision-Recall curve

Plotting the precision at different recall values gives the precision-recall curve. A larger
area under the curve means high precision at high recall values and is therefore an
indication of a good set of results and a good system configuration.

Precision is calculated at recall points with set intervals. The number of points can be
configured but has been set to 101 for these evaluations. This means recall points with
values

r,=0.0,r,=0.05,r,=0.1,r,=0.15,r,=0.2, ..... r,,=1.0
At points where precision can't be directly calculated, interpolation is used.

ﬁi(r.): maX(rj<r<rj+1)P,(R:r) if P,-(RZI’) exists

" Bi(r;,) otherwise

Where r; isthe jth recall value and P;(r;) is the precision at that point.

4.3 MAP (Mean average precision)

MAP (Mean average precision) is a single measure that holds important information
about the precision-recall curve and can be represented in a single value, making it
more straightforward to compare results. It correlates with the area size under the curve,
therefore larger values mean more preferable results.

N Q,

Z P(doc;)

\ \
MAP=-_% L
Nj:\ Oj i=\

Where Q; is the number of relevant documents for query j , N is the number of
queries and P(doc;) is the precision at ith relevant document. It essentially gives
the average precision over different portions of the result set.

30



4.4 Precision, recall and F-measure curves

Plotting precision, recall and F-measure at every retrieved document gives an idea of
how these values change over the result collection. These can be compared to other
queries, illustrating the difference.

1
0.9
0.8
0.7
0.6

0.5 — Recall-Current
0.4 — Recall-Mphil
0.3

0.2

0.1

0
0 20 40 60 80 100 120 140 160 180 200

Figure 15: Recall curves of two different systems that return different number of results

4.5 Lexical variance

One purpose of expanding the query is to introduce variance for the user. Similar results
could then be identified and clustered together. An option for evaluating this variance is
to measure the occurrence of the selected words and their synonyms in the results.

IQV (Index of Qualitative Variation) is a measure of qualitative variation (Gibbs et al.,
1975) and was used to evaluate the lexical variance in these experiments.

fF,\°
N

Where K is the number of classes, f; is the number of occurrences for category
i and N is the total number of occurrences.

K
IQV=——
Q K-1

1-2,

i=1

IQV has the following properties:

e IQV value is between 1 and 0.
e IQVis 0if and only if all cases belong to a single category.
e IQVis 1if and only if cases are evenly divided across all categories.

Therefore IQV is a suitable measure to show whether greater lexical variance has been

31



successfully introduced compared to the original query.

” 13 ” 13

An example: For the synonym set {“express”, “overexpress”, “coexpress”’} K=3 and

f, would be the number of times “overexpress” occurs in the set of results. Variance
is calculated separately for each selected word (including its synonyms) and then
averaged over all selected words.

In addition to the lexical variance of the selected words, the lexical variance of
connected words can be measured. Connected words are words that are connected to
any of the selected words through a direct relation. IQV is used to calculate the variance
of these words for each selected word and the average is used. This measure should
theoretically show if, by introducing greater lexical variance in the selected words, we
have also increased the lexical variance of words that are either heads or dependents to
the selected words and not directly included in the query.

4.6 Number of new results
We can calculate how many of the sentences in the result set are not represented in the
set returned by the baseline system. These are sentences that have only become
available using the enhancements. Doing this calculation at every returned sentence will
provide a graph showing if the previously unseen sentences are evenly distributed or get
clustered to either the top or the bottom of the ranks.

70

60

50

40

—Count
30

20

10

0 |t

0 50 100 150 200 250

Figure 16: The number of new results over all returned sentences. Showing a system
that tends to push new results away from the top ranks.

32



4.7 Spearman's rank correlation

Spearman's rank correlation coefficient is a non-parametric measure of correlation
(Spearman, 1904). It can be used to show how two sets of rankings correlate with
eachother.

62.d;
p=1-—S—1

n(n“-1)
Where d;=x;—y; , the difference between ranks of the same element in both sets
and n is the number of elements in both sets. The value of p will be between -1
and 1: Value 1 if both rankings are identical, -1 if they are negatively correlated and O if
they are uncorrelated.

Spearman's correlation only works on sets that contain the exact same elements. It can
not handle one set having an element that is not present in the other one, as is the case
during some of our tests. Therefore, for our purposes, when calculating this measure
over n elements, it means looking at elements that are present in the first n elements of
both sets.

33



Chapter 5: Experiments

5.1 Gold standard

To thoroughly evaluate the proposed methods, a test set is needed — a large collection
of queries and manually checked correct answers for each of them. Since no suitable
test set is available, the construction of such queries and the manual annotation needed
to find all the answers would require much work by a group of domain experts. It was
not possible to construct such a set as part of this MPhil project, therefore development
and testing was done using randomly selected single queries that were annotated by the
author. Such evaluation does not provide generalisation over a larger set of queries but
is meant as a proof-of-concept.

In these tests the evaluation is done on the sentence level — if the returned sentence
contains the kind of information the user was looking for, it is classified as correct.

For initial results and development, the query of “express-Adh” was used. This imitates
finding the sentence

Adh is not expressed in the developing embryo , and we find no difference in
the hatching times among our four different transformant types ( Tables 1
and2 ) .

and selecting lemmas Adh and expressed. In the set of grammatical relations for this
sentence, these lemmas are connected by a relation

[24, express, Adh, 0, -1]

To classify a sentence as correct, it would have to contain information about the
expression of Adh. The application MphilGoldFinder was written and used to manually
decide for each sentence, whether it is a correct answer or not. The program executes a
manually constructed query and displays all the matching sentences one by one, letting
the user decide if a sentence is correct. The sentence IDs are saved into separate files
based on their classification.

For this set, the query was constructed so that it would return any sentence containing a
form of express or Adh, including their synonyms. Since this means manually
classifying only a subset of all the sentences in the database, it can be assumed that it
is not a fully complete set — for that, all the 5000 papers would have had to be read and
that was not done due to time constraints. But the set contains all the results returned by
any version of the system so it can be used to compare them and show improvement.

34



Examples of sentences classified as incorrect:

-The levels of nucleotide and protein variation in the Adh region are sufficient
for detection of significant linkage disequilibrium .

-However , in these previous studies , the association between expression level
and tolerance was established without consideration of genotype , so that the
effects of genetic background , catalytic differences among Adh genotypes ,
and differences in expression level were not separated in their analyses .

Examples of sentences found to be correct:

-The sequence analysis of the 5 9 -flanking region of the Adh gene indicates a
single promoter and shows stretches of high similarity with cis -acting
elements responsible for the expression of Adh in Drosophila melanogaster .

-We have already used the short MSSP- 2 promoter fragment for the
expression of the Drosophila alcohol dehydrogenase ( ADH ; BELWWAJATT et
al. 1983 ) in the med y .

Total of 246 results were manually classified for this set, out of which 145 were classified
as correct and 101 as incorrect answers to the query.

The evaluation task is somewhat different and was proposed by a domain specialist as
a real-world problem that this system could help solve. Drosophilia Melanogaster genes
each have IDs in the form of CGXXXXX where the X-s are a sequence of 4 or 5
numbers. Using computer prediction, genes are entered into the FlyBase database and
given these IDs even before they are discovered in the real world. Researchers who do
find these genes are free to give them an alternative name; for example CG6736 is also
known as insulin-like peptide 4 (llp4). The goal of the evaluation task is to find cases
where a gene is named and a CG identifier is associated with another gene name. This
could be of great help to annotators or automated systems that are putting together
databases of gene synonyms.

To assemble a gold standard, all the qualifying sentences from the 5000 papers have to
be located. The only requirement for a sentence naming a CG gene is that it contains a
CG identifier. Unfortunately, the number of these sentences was very large and subsets
had to be chosen for manual annotation. Those subsets were selected so that certain
keywords or conditions had to be present in the sentences. For example requiring
naming-related keywords like “name” or “refer’ to also be present reduced the number of
sentences and increased precision. The returned sentences were manually annotated
by the author as either correct or incorrect.

35



Examples of sentences found to be correct answers to the query:
-For this reason we have named CG8806 preli-like ( prel ) .

-The CG9506 gene ( which we call slam for slow-as molasses ) encodes a novel
gene with no previously characterized homologs or well-defined structural mo
tifs ( see below ) .

Incorrect sentence examples:

-A second CG15605 gene segment was identified in a dot plot analysis and
appears to be a pseudogene that we designate CG15605w ( Figure 1 ) .

-The probe corresponding to the predicted gene CG13620 was generated from
a PCR product consisting of bases 1357 to 2508 of the mld cDNA
corresponding to part of the third exon .

In total, 601 sentences were manually classified for the evaluation set, which includes
225 correct and 376 incorrect sentences.

A well known problem in automatically processing medical papers is hedging — authors
making uncertain claims, usually by adding appropriate adjectives or adverbs. An
example of a hedged claim in the evaluation set would be:

Several pieces of evidence indicate that Hmr corresponds to the MADF-
containing gene CG1619 .

The sentence implies that the relation exists but leaves room for doubt. Results of this
kind can be handled in different ways — if the system is used by annotators, they would
only want to see definite results without hedging, whereas researches trying to find
information on a topic are also interested in theories and unproven claims. This is an
ongoing research issue (Medlock, 2008) and is not tackled in this project. For the gold
standard hedged sentences were classified as correct.

36



5.2 Results

Experiments were run with 7 different configurations:

1. Baseline

Synonym expansion (Syn)

Pattern scoring (Patt)

Distance scoring (Dist)

Synonym expansion with pattern scoring (Syn+Patt)

Synonym expansion with distance scoring (Syn+Dist)

N o o os w0

Synonym expansion, pattern scoring and distance scoring (Hybrid)

The tests were run on both development and evaluation queries using the gold
standards described in 4.1. Next, we present results for each technique.

5.2.1 Baseline

The baseline system uses a simple query and rescores the results using a simple
algorithm, looking for exactly the same relations that were specified in the query.

Devel Eval
Precision 0.7434 0.5854
Recall 0.7847 0.2133
Fmeasure 0.7635 0.3127
MAP 0.7346 0.1163

Table 2: Basic statistics for the baseline system

Table 2 shows that for the development query, the baseline system achieves relatively
high precision and recall. This is because the query specifies the lemmas express and
Adh which are used more frequently than their synonyms. In addition, the relation
express—Adh comes up very often in the data, allowing the baseline system to perform
well without any intricate scoring methods. The F measure and MAP also point to a
system that gives reasonably good results.

37



1.2

0.8
0.6 —Precision
—Recall
F measure

0.4
0.2

0

0 20 40 60 80 100 120 140 160

Figure 17: Precision, recall and F measure over all results for the development query on
the baseline system

1.2
1

0.8 \—\\—\

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

— Baseline

Figure 18: Precision-recall curve for the development query on the baseline system

Precision over all results (Figure 17) shows that the first 50 results returned by the
baseline system are correct. Recall also increases steadily throughout the whole set.
This means a positive experience for the user where they are not forced to sort through
false positive results. In total it returns 152 sentences out of which 113 are correct.
Figure 18 shows the precision-recall curve for the query.

38



1.2

0.8
0.6 —Precision
—Recall
F measure
0.4
0
0 10 20 30 40 50 60 70 80 90

Figure 19: Precision, recall and F measure over all results for evaluation query on the
baseline system

1.2

1
0.8
0.6
0.4
0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

== Baseline

Figure 20: Precision-recall curve for the evaluation query on the baseline system

For the evaluation data the baseline system looks for name-CGID relations from the
text. The system does less well compared to development data, which was expected
since the query is much more complicated. There are various ways of naming a gene
and authors of scientific papers often use long and complicated sentence structures
which cannot be recognised by this system. Also, in contrast to the development query,
there are many different keywords that are equally popular for indicating a naming
process and sometimes no keywords are needed at all.

Precision is still relatively high because of a very specific query but the baseline system
returns only a small subset which means low recall values. The precision graph over all
results (Figure 19) shows that some relevant results are clustered towards the top ranks
but precision drops fast after that. Recall increases steadily over all results but peaks at
a very low value. For the evaluation task the system returns 82 sentences from which 48

39



are correct.

This baseline system is used for comparison to all the other results.

5.2.2 Synonym expansion

This version of the system uses synonyms to expand the query with relevant keywords.
A pre-assembled database of genomics-related synonyms was used to find words that
have a close meaning to the ones used in the query. In these experiments only verbs
and gene names were used when doing the expansion. The results returned by the
Lucene engine are then rescored using a simple algorithm that only looks for direct
relations that were specified in the query and are present in the candidate sentence.
This algorithm is the same as in the baseline system but was modified to account for the
use of synonyms.

Baseline Synonyms
Devel Eval Devel Eval
[tems retrieved 152 82 213 481
Relevant items retrieved 113 48 140 193
Precision 0.7434 0.5854 0.66 0.4012
Recall 0.7847 0.2133 0.97 0.8578
F measure 0.7635 0.3127 0.78 0.5467
MAP 0.7346 0.1163 0.85 0.4612

Table 3: Basic statistics for the synonym expansion system

The benefit of the synonym expansion is that it find sentences that use a variation of
words to convey the same meaning. For example the following sentence could not have
been located using the baseline system:

CG31201 has been identified as an essential glutamate receptor subunit at
the Drosophila NMJ (Qin et al., 2005)and is now referred to as GIuRIIE.

The total number of items returned by the system (shown in Table 3) increases greatly
and even more important is the increase in recall for both development and evaluation
queries. For the evaluation query, the introduction of synonyms increases the recall
value 4 times.

During synonym expansion, the lemma name in the query was successfully replaced
with the lemma refer and the sentence was returned by the search. These kind of
sentences still get a low position in the ranking since the rescoring algorithm is relatively
simple and cannot reward complex relations. Any score it gets is only from the lemma
matches — the sentence does contain a CG identifier and the lemma refer.

40



1.2

— Devel-baseline
Devel-synonyms

-~ Eval-baseline

—Eval-synonyms

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 21: Precision-recall curves for the synonym expansion system

Consistent increases in MAP and F measure when using synonym expansion are good
indications that the technique is beneficial and the system in general performs better
than the baseline. The only value that drops is precision, which was to be expected —
expanding the query with new words based on similarity is bound to introduce certain
levels of unwanted noise and this is reflected in the precision drop. But the increase in
recall is greater than the drop in precision for both cases.

The precision-recall curves (Figure 21) show that there are some points where the
precision of the baseline system is higher but the area under the curve is much larger
with the synonym extension, for both the development and the evaluation query.

70 450
60 400
50 350
40 300

250
30 Devel 200 —Eval
20 150
10 100

50
0 0

0 50 100 150 200 250

0 100 200 300 400 500 600
Figure 22: New results introduced for the

) . Figure 23: New results introduced for the
development query with synonym expansion

evaluation query with synonym expansion

Figures 22 and 23 show the number of results that were not returned by the baseline

41



system but are found when using synonyms. Ideally, these new sentences would be
distributed uniformly among all results. In the case of the development query the graph
illustrates how only a few new results are introduced in the first 70 rankings and most of
them are clustered at the bottom. The evaluation query shows a much more preferable
outcome where the sentences are almost equally represented at all rankings. This is
due to the nature of the queries: a great majority of sentences describing the expression
of Adh actually contain the lemma express and a direct relation to the gene, therefore
they are scored highly by the simple rescoring technique and take up most of the top
rankings. In contrast, sentences where genes are being named tend to have more
complicated structures and this is not very well captured by the current rescoring. That
means only very few sentences actually benefit from the rescoring and most ranking is
done based on the presence of lemmas, which gives equal chances to all the
sentences.

Ideally we want the system to also introduce some level of lexical variability — instead of
hundreds of identical sentences they would be visibly different while still being correct
answers to the query. This would provide a more interesting experience for the user and
also creates a base for future extensions where similar sentences can be clustered
together.

To measure lexical variance, IQV (explained in 4.2.5) was calculated over all returned
sentences and also over only the ones that belong to the gold standard (correct
sentences).

Baseline Synonyms
All Correct All Correct
IQV for express 0.053 0.053 0.358 0.179
IQV for Adh 0.274 0.300 0.440 0.422
Average IQV for devel 0.164 0.177 0.399 0.301
IQV for name 0.175 0.233 0.825 0.900
IQV for CGXXXX 0.997 0.989 0.999 0.997
Average IQV for eval 0.586 0.611 0.912 0.948

Table 4: 1QV values calculated for selected words

The results in Table 4 show a steady increase in all cases, indicating that lexical
variance was indeed successfully introduced. Increasing IQV for the correct answers
also shows that the larger variance is not due to noise and can be credited to useful
sentences. The lexical variance of connected words was also calculated. These results
showed consistent increases but since the values are are already very high for the
baseline system (over 0.99) there was not much room for improvement.

42



5.2.3 Pattern scoring

Pattern scoring is the method for rescoring a set of results. Hand-constructed patterns
are used to find sentences that should receive a higher score. General precision, recall
and lexical variance are identical to either the baseline or the synonym expansion
system, depending on whether synonyms are used; only the ranking of sentences is
being changed. For the development query patterns described in 3.3 were used. The
following patterns were constructed for the evaluation query:

name -ncsubj-> TARGET (1)

name -pcomp-> to —-iobj-> TARGET (2)
name —-iobj-> to —ncmod-> TARGET (3)
name -dobj-> TARGET (4)

name -obj-> TARGET (5)

CGID -brack-> GENE (6)

GENE <-brack- CGID (7)

TARGET is defined for CG tokens in the same way as for the development query. Pattern
1 captures structures where a new gene name is a direct subject of the verb

[...] CG2086 ( which we have named draper ; drpr) [...]

Patterns 2 and 3 find sentences where a gene is connected to the verb through a
preposition

This factor has been called short Spen-like protein ( SSLP or DmSSp ) and is
referred to as CG2910 in the annotated genome .

Patterns 4 and 5 score highly structures where a gene name is the object of the verb.
Sentences that also match pattern 1 get an even higher score since they have both
suitable subjects and objects for the verb.

[...] CG16982 , designated as dRbx1][...]

Finally, patterns 6 and 7 are for sentences where the naming is done using brackets
instead of verbs or keywords, for example

On the basis of these findings and other PCR tests , we conclude that
Df(4)M101-62f is deleted or disrupted for the following genes : CG17245
(plexB ), CG2125 (ci), CG2168 ( RpS3A ) , CG17964 ( pan ) , CG32008 (
Ank ), CG1587 ( Crk ), CG1629 ( yellow h ) , and CG1674 .

43



1.2

0.8 -

‘ — Devel-baseline
06 ) Devel-patterns
‘ ' ~Eval-baseline
—Eval-patterns

0.4
0.2
0
0 01 02 03 04 05 06 07 08 09 1
Figure 24: Precision-recall curves for the system using pattern rescoring
1.2

-~ Devel-synonyms
Devel-syn+patt

~Eval-synonyms

—Eval-syn+patt

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 25: Precision-recall curves for the system using synonyms and pattern
rescoring

Precision-recall graphs (Figures 24 and 25) show that the technique was beneficial. The
precision level is the same or higher at every recall point for both the development and
the evaluation query. Correct sentences that were previously sent to the bottom of the
ranking are now brought up since they successfully match one or more of the patterns.
Tests were also run using synonym expansion and pattern rescoring together. The
results are similar and show a consistent improvement: MAP increased from 0.855 to
0.918 for the development query and from 0.461 to 0.551 for the evaluation query.

44



To find out exactly how much the rescoring algorithm affects the rankings, Spearman
correlation coefficient was calculated. It shows how well the ranks in two sets of
elements correlate with each other.

Patterns Syn + patterns

Devel Eval Devel Eval
First 20 elements 1.00 1.00 0.50 1.00
First 50 elements 0.91 -0.18 0.21 0.36
First 80 elements 0.86 0.07 0.29 0.10

Table 5: Spearman's correlation coefficient, calculated against the baseline

The results in Table 5 show that after rescoring the sets are still correlated positively
rather than negatively, meaning the sentences are largely in the same order as for the
baseline system. Among the first 20 elements the correlation is especially high with all
versions of the system. Such high correlation values can be explained by many
sentences receiving identical scores from pattern matches - the order between those
results is decided based on lemma matching scores, which are the same in both cases.
Correlation decreases by 50-77% for the development query when synonyms are used,
which indicates that some amount of variety was successfully introduced. The only
negative correlation was found when looking at the first 50 elements returned by the
evaluation query using patterns. As explained in 4.2.7, this measure does not take into
account the results that are not present in the specified subset for either of the sets.

70 450
60 400
50 350
300
40 250
30 ~—Syn 200
20 —Syn+Patt 150
100
10
0

—-Syn
— Syn+Patt

50

0
0 50 100 150 200 250 0

100 200 300 400 500 600

Figure 26: New results introduced with the
development query and pattern rescoring

Figure 27: New results introduced with the
evaluation query and pattern rescoring

The placement of new results in the rankings (Figures 26 and 27) shows that there is
not much change for the evaluation query — these sentences are still evenly distributed.
For the development query these new results are heavily clustered towards the bottom,
even more than using the baseline rescoring algorithm. This is not the preferred result
since the user would have to go through most of the set to benefit from the synonym
expansion, but otherwise the system performs very well, improving both recall and MAP.

45



5.2.4 Distance scoring

The distance scoring algorithm tries to achieve results similar to the pattern scoring
technique but without any training data or the need for hand-constructed patterns. Each
sentence is assigned a score by locating certain relevant lemmas and finding shortest
possible path between them using the set of binary grammatical relations from the
parser. The system assumes that lemmas with the shortest distance (the least amount
of links) separating them are more likely to be semantically connected and therefore
should receive a higher score.

1.2

0.8

-~ Devel-baseline
Devel-patterns

—Devel-distance

~Eval-baseline

0.6

0.4 Eval-patterns
=—Eval-distance
0.2
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 28: Precision-recall curves for the system using distance scoring
1.2

- Devel-synonyms
Devel-syn+patt

—Devel-syn+dist

~ Eval-synonyms
Eval-syn+patt

— Eval-syn+dist

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 29: Precision-recall curve for the system using synonym expansion and
distance scoring

46



The precision-recall curves (Figures 28 and 29) show that the system generally
performs better than the baseline but in most cases not as good as the pattern scoring.
It does best on the development query with synonym expansion, achieving even slightly
higher MAP than pattern scoring — 0.918 compared to 0.914 — but in other cases it
receives lower values. This is mainly because the algorithm uses a heuristic approach
that is not as specific and grammatically guided as the pattern scoring technique. Error
analysis showed that it can rank very highly sentences that have nothing to do with the
CG gene naming process but simply have the right lemmas very close together, for
example

Notably , we detected six spatzle-like proteins or domains in Drosophila ,
namely Serrate and putative products CG9196 , CG9972 , CG14533,
CG14928 , and CG18318 ( unpublished data ) .

At the same time it will send some correct sentences to the bottom of the rank if no
suitable relation has been found by the parser. This sentence was among one of the
lowest ranked results for the evaluation query:

Among all potential ROS regulators in the Drosophila genome , only one
annotated gene ( CG8913 ; named as immune-regulated catalase [ IRC ] in
the present study ) has been identified as a DIRG ( De Gregorio et al. ,

2001 ).
70 450
400
350
300
250
- Syn 200 - Syn
—SynDist 150 — SynDist
100
50
0
0 50 100 150 200 250 0 100 200 300 400 500 600
Figure 30: Number of new results on the Figure 31: Number of new results on the
development query using distance scoring evaluation query using distance scoring

Figures 30 and 31 show where the new results are placed in the ranking. For the
development query, the distance scoring algorithm distributes these sentences
differently — while many of them are still placed at low rankings, a portion of them get to
be in the top 20. This means the user will see more variation in the set of results early
on. Distance scoring is also able to slightly improve the already uniform distribution of
the evaluation query.

47



Patterns Syn + patterns

Devel Eval Devel Eval
First 20 elements -0.024 0.600 1.000 1.000
First 50 elements 0.478 0.018 0.362 -0.257
First 80 elements 0.553 -0.311 0.447 0.347

Table 6: Spearman's correlation coefficients calculated against baseline
scoring systems

Spearman's correlation coefficient (shown in Table 6) shows how much the ranking is
correlated to the ranking of the baseline system. These values seem to fluctuate very
heavily from complete correlation to negative correlation. When plotting this for every
possible subset, main trends can be visibly identified: large positive correlation in the top
end; small or negative correlation in the middle; slowly climbing positive correlation
overall. This is because a certain set of very easily identified sentences get ranked
highly by all the algorithms, after which the variation gets larger and correlations
decreases.

Since the pattern and distance scoring algorithms performed well compared to the
baseline system, a final system was created that makes use of them both. This system
uses all the techniques described here: synonyms are used to expand the query, pattern
scoring is used to find sentences that contain certain grammatical structures, distance
scoring is used to locate sentences where the selected lemmas are in a close relation
with each other. Calculated scores for each sentence are added together to form the
final score.

1.2

-~ Devel-synonyms
Devel-syn+patt

-~ Devel-syn+dist

—Devel-hybrid

~ Eval-synonyms
Eval-syn+patt

0.2 -~ Eval-syn+dist

—Eval-hybrid

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 32: Precision-recall curve for the hybrid system using synonym expansion,
pattern scoring and distance scoring

48



No synonyms Synonyms
Devel Eval Devel Eval
Baseline 0.735 0.116 0.855 0.461
Pattern scoring 0.758 0.162 0.914 0.552
Distance scoring 0.741 0.146 0.918 0.512
Pattern and distance scoring - - 0.933 0.562

Table 7: MAP for all systems

The precision-recall graphs (Figure 32) show that the combination system performs
equally well or even better. Although the precision is intersected by other systems in
various recall points, the average level remains higher than for any other system. This is
very well reflected in the MAP values where the combination system achieves 0.933 on
the development query and 0.562 on the evaluation query — both higher than any other
system configuration.

The strength of the new technique is that it uses information from multiple sources to
assign scores for each result. Highly ranked sentences receive large scores from the
distance scoring algorithm and also match one or more grammatical patterns. If one of
the scoring techniques returns a zero score, the system will still fall back to the other
solution, which allows for more sentences to receive an adequate rank.

1.2

1

0.8
0.6 ---- Prec-Baseline
Prec-Hybrid
0.4 - Rec-Baseline
— Rec-Hybrid

0.2

0
0 50 100 150 200 250

Figure 33: Precision and recall over all results for the baseline and the hybrid system using
synonym expansion, patterns scoring and distance scoring. Development query.

49



1.2

1

0.8 | //_/_,_,—/-"
|
0.6 | e ~— Prec-Baseline

Prec-Hybrid
---- Rec-Baseline
— Rec-Hybrid

0.4

0.2

0
0 100 200 300 400 500 600

Figure 34: Precision and recall over all results for the baseline and the hybrid system using
synonym expansion, patterns scoring and distance scoring. Evaluation query.

Figures 33 and 34 compare the precision and recall of the final system to the baseline
results. Looking at the development query, we can see that the curves extend further,
showing more than 100 extra results. The first 50 results of both systems are correct but
after that the precision of the baseline system starts to drop whereas the combination
system keeps its precision for the first 90 results. The precision of both systems drops at
roughly the same speed but the new system has higher corresponding values. The
recall curve shows the same trends, with the hybrid system preforming equally well in
the beginning and achieving around 0.1 higher values towards the end.

Looking at the evaluation query, the most noticeable difference is the number of
returned results — 82 from the baseline compared to 481 from the hybrid system. The
precision of the new system drops down to 0.5 during the first four results after which it
climbs back up to 0.8 and starts decreasing gradually. This is in contrast with the
baseline system, which has its highest precision after retrieving 5 results, then drops to
0.4 and starts climbing again from there. If the priority was to have very high precision in
the first few results, then the baseline system would have the advantage. Error analysis
revealed the reason for this — a few very long sentences or text fragments containing
large numbers of relations get ranked very high with the new system. Because of their
length, they are likely to contain more gene names and different relations between them,
randomly matching several patterns and receiving high scores from the distance
algorithm.

This is an example of such a sentence and it was ranked at number 2 by the
combination system on the evaluation query:

To synthesize dsRNA , the following PCR-primers containing a 27 nucleotide
long T7 RNA polymerase promoter sequence at their 5 \' ends were

50



constructed : for CG8784 the sense primer 5 \' -TAATA
CGACTCACTATAGGGAGACCACCATTTGGCTGGCGGCCTT CC-3 \!

( corresponding to nucleotide positions 693 to 712 of Fig. 1 ) and the
antisense primer 5 \' -TAATACGACTCACTATAGGGAGACC
ACGCGTTGTTGTTTACACTGCA-3 \' ( corresponding to nucleotide positions
1324 to 1343 of Fig. 1 ) , for CG8795 the sense primer 5 \' -TAA
TACGACTCACTATAGGGAGACCACCGGAAACGGCGGCCA ATGCG-3 \!
( corresponding to nucleotide positions 428 to 447 of Fig. 2 ) and the
antisense primer 5 \' -TAATACGACTCACTATAGGGAG
ACCACGGCAGATCCATTTAGCCCAG-3 \' ( corresponding to nucleotide
positions 1214 to 1233 of Fig. 2 ) .

It does not contain information about naming the CG gene and therefore we wouldn't
want to present this to the user. But there are only a few single examples of such cases
and this should not be a major problem for a researcher trying to find hundreds of
sentences or documents containing a specific topic.

70 450
60 400
50 350
300

40 250
30 —Syn 200 - Syn
2o — Hybrid 150 — Hybrid

100
50
= 0
0 50 100 150 200 250 0 100 200 300 400 500 600

10
0

Figure 35: Number of new results using the Figure 36: Number of new results using the
hybrid system. The development query. hybrid system. The evaluation query.

Figures 35 and 36 show that the hybrid system is not distributing the new results very
well. There is not much difference for the evaluation query, which has a very good
baseline already. For the development query the final system places most of the new
systems at lower ranks, more than any previous system or even the baseline. But the
results that do get ranked highly are mostly correct, resulting in a system that has the
best MAP and a large area under the precision-recall curve. Since the goal was to
achieve good results on the whole set, not only the top ranking ones, this can still be
viewed as the best performing configuration.

51



Chapter 6: Conclusion and Future Work

Information Extraction is a promising and important research area that can help us deal
with the increasing amount of data available today and in the future. The ability of
finding relevant information fast and efficiently can be of great help when solving nearly
any task. In this dissertation we described an IE system that that does not need to be
customized for every query but can execute them right as they are created by a non-
specialist user. A database of 5000 biomedical papers was used — the sentences had
been parsed with a full parser, performing tokenisation of text, extracting lemmas and
finding grammatical relations between them. Users could then indirectly specify the type
of information they were looking for and the system would return sentences that match.

Several techniques and combinations were tried to improve the system performance, all
of them having their strengths and weaknesses. Synonym expansion was used to find
keywords similar to those specified by the user. This made the system return a larger
number of sentences, reducing precision but increasing recall. Pattern scoring algorithm
was used to score highly sentences that contain certain kinds of grammatical relations,
derived from the original query, for example passive and nominalised forms. This
reranked the sentences so that the set achieved higher MAP and a larger area under
the precision-recall curve. To use this approach, patterns had to be manually
constructed and selected, which was the main weakness of the approach. As an
alternative, distance scoring was proposed and tested — sentences were scored based
on automatically found paths through the relation trees. Relevant lemmas that were
connected through a fewer number of relations resulted in a higher score. This approach
successfully distributed the new results across the ranks and gave an improvement over
the baseline but did not reach the MAP values of the pattern scoring system.

For the final configuration, all approaches were used together. It achieved MAP values
of 0.933 for the development query and 0.562 for the evaluation query, surpassing all
individual techniques. It did not distribute the new results very well, mostly positioning
them at middle or lower ranks. The approach still requires manual construction of
patterns, which could be solved by developing an automated learning system.

For future work, the main goal is to integrate machine learning and pattern collection to
make the process more flexible and automatic. Weakly supervised algorithms
(Stevenson & Greenwood, 2005), which bootstrap from a small number of examples,
could be used to construct the patterns based on user input. Distributional semantic
clustering with space models (Pado & Lapata, 2003) can be used to cluster results so
that the user would not have to go through large amounts of similar sentences. Further
developments in the user interface would also help make the system more flexible and
enable more complex queries in the future.

52



References

Al-Halimi, R., Berwick, R. C., Burg, J. F. M., Chodorow, M., Fellbaum, C., Grabowski,
J., Harabagiu, S., Hearst, M. A., Hirst, G., Jones, D. A., Kazman, R., Kohl, K. T.,
Landes, S., Leacock, C., Miller, G. A., Miller, K. J., Moldovan, D., Nomura, N.,
Priss, U., Resnik, P., St-Onge, D., Tengi, R., van de Riet, R. P. & Voorhees, E.
(1998). WordNet: An Electronic Lexical Database.

Briscoe, T., Buttery, P., Carroll, J., Medlock, B. & Watson, R. (2008). Text Processing
and Services from iLexIR Ltd.

Briscoe, T., Carroll, J., Watson, R. (2006). The second release of the RASP system.
In Proceedings of the Interactive Demo Session of COLING/ACL.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K. &
Wong, Y. W. (2005). Comparative Experiments on Learning Information Extractors
for Proteins and their Interactions. Artificial Intelligence in Medicine (special issue
on Summarization and Information Extraction from Medical Documents). 33 (2).
pp. 139-155.

Cohen, A. M. & Hersh, W. R. (2004). A survey of current work in biomedical text
mining. Briefings in Bioinformatics. Vol. 6, No I. pp. 57-71.

Coles, P.,, Cox, T., Mackey, C. & Richardson, S. (2006). IBM Gilobal Technology
Services.
www-03.ibm.com/systems/resources/systems_storage solutions pdf toxic tb.pdf

Daraselia, N., Egorov, S., Yazhuk, A., Novichkova, S., Yuryev, A. & Mazo, |. (2004).
Extracting Protein Function Information from MEDLINE Using a Full-Sentence
Parser. In Proceedings of the Second European Workshop on Data Mining and
Text Mining for Bioinformatics. pp. 15-21.

Gibbs, J. P., Poston, Jr. & Dudley, L. (1975). The Division of Labor: Conceptualization
and Related Measures. Social Forces, Vol. 53, No. 3. pp. 468-476.

Goetz, B. (2000). The Lucene Search Engine: Powerful, Flexible and Free.
http.//www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html|

Gospodnetic, O. & Hatcher, E. (2005). Lucene in Action. Greenwich: Manning
Publications Co.

53



Leroy, G. & Chen, H. (2002). Filing Preposition-Based Templates to Capture
Information from Medical Abstracts. In Pacific Symposium on Biocomputing 7, pp.
350-361.

Medlock, B. (2008). Exploring hedge identification in biomedical literature. Journal of
Biomedical Informatics.

Pado, S., Lapata, M. (2003). Constructing Semantic Space Models from Parsed
Corpora. In Proceedings of ACL-03.

Raychaudhuri, S., Schutze, H. & Altman, R. B. (2002). Using text analysis to identify
functionally coherent gene groups. Genome Research, vol 12(10), pp. 1582-1590.

Spearman, C. (1904). The proof and measurement of association between two things.
The American journal of psychology. pp. 72—-101.

Stevenson, M., Greenwood, M. A. (2005). A Semantic Approach to IE Pattern
Induction. Proceedings of the 43rd Annual Meeting of the ACL. pp. 379-386.

Tsuijii, J. (2009). BioNLP'09 Shared Task. http://www-tsujii.is.s.u-
tokyo.ac.jp/GENIA/SharedTask/index.shtml

Tweedie, S., Ashburner, M., Falls, K., Leyland, P., McQuilton, P., Marygold, S.,
Millburn, G., Osumi-Sutherland, D., Schroeder, A., Seal, R., Zhang, H. & The
FlyBase Consortium. (2009). FlyBase: enhancing Drosophila Gene Ontology
annotations. Nucleic Acids Research.

Yakushiji, A., Miyao, Y., Tateisi, Y. & Tsujii, J. (2005). Biomedical Information
Extraction with Predicate-Argument Structure Patterns. In Proceedings of the First
International Symposium on Semantic Mining in Biomedicine, pp. 60-69.

Yakushiji, A., Tateisi, Y., Miyao, Y. & Tsuijii, J. (2001). Event Extraction from Biomedical

Papers Using a Full Parser. In Proceedings of the Pacific Rim Symposium on
Biocomputing 6, pp. 408-419.

54



Appendix A: Express-Gene patterns

Most frequent patterns between the lemma express and a gene, denoted by the token
[:GENE::]. These were collected and counted from the index of 5000 biomedical
papers.

Rank |Pattern Count
1 express ---> [::GENE::] 55988
2 express ---> of ---> [::GENE::] 10793
3 express <--- and ---> [::GENE::] 6341
4 express ---> and ---> [::GENE::] 5430
5 express ---> [::GENE::] ---> [::GENE::] 2561
6 express ---> of ---> and ---> [::GENE::] 2393
7 express ---> of ---> gene ---> [::GENE::] 1511
8 express ---> of ---> [::GENE::] ---> [::GENE::] 1478
9 express ---> in <--- [::GENE::] 1287
10 express ---> or ---> [::GENE::] 1199
11 express ---> protein ---> [::GENE::] 1040
12 express <--- or ---> [::GENE::] 996
13 express ---> gene ---> [::GENE::] 940
14 express <--- [::GENE::] 889
15 express <--- pattern ---> [::GENE::] 784
16 express ---> in ---> [::GENE::] 724
17 express ---> of ---> protein ---> [::GENE::] 712
18 express <--- domain ---> [::GENE::] 597
19 express <--- and ---> [::GENE::] ---> [::GENE::] 544
20 express <--- and ---> and ---> [::GENE::] 513
21 express <--- vector ---> [::GENE::] 507
22 express ---> in ---> and ---> [::GENE::] 477
23 express <--- pattern ---> of ---> [::GENE::] 440
24 express ---> transgen ---> [::GENE::] 421
25 express <--- induc ---> [::GENE::] 419
26 express ---> in ---> mutant ---> [::GENE::] 412
27 express ---> of ---> or ---> [::GENE::] 408
28 express ---> of ---> transgen ---> [::GENE::] 397
29 express ---> and ---> [::GENE::] ---> [::GENE::] 388

55




Appendix B: Gene-CGID patterns

Most frequent patterns between gene names and CGXXXXX ID tokens,
denoted by [::GENE::] and [::CG-ID::] respectively. These were collected and
counted from the index of 5000 biomedical papers. Compared to appendix A
these are more difficult to collect and contain more noise (false patterns).

1 [::GENE::] <--- [::CG-ID::] ---> [::CG-ID::] 2421
2 [::GENE::] <--- and ---> [::CG-ID::] 1862
3 [::GENE::] <--- [::GENE::] ---> [::CG-ID::] 1681
4 [::GENE::] <--- 9 ---> [::CG-ID::] 1620
5 [::GENE::] ---> [::CG-ID::] 789
6 [::GENE::] <--- [::CG-ID::] 593
7 [::GENE::] <--- [::GENE::] <--- and ---> [::CG-ID::] 585
8 [::GENE::] <--- 82 ---> [::CG-ID::] 527
9 [::GENE::] <--- cnc* ---> [::CG-ID::] 396
10 [::GENE::] <--- 87 <--- clone <--- cg14734sivit ---> [::CG-ID::] 351
11 [::GENE::] <--- 87 ---> [::CG-ID::] 216
12 [::GENE::] <--- 1.9 ---> [::CG-ID::] 210
13 [::GENE::] <--- pointed-rc ---> [::GENE::] ---> [::CG-ID::] 208
14 [::GENE::] <--- vol. ---> [::CG-ID::] 208
15 [::GENE::] <--- 2 ---> [::CG-ID::] 197
16 [::GENE::] <--- [::GENE::] <--- pointed-rc ---> [::CG-ID::] 196
17 [::GENE::] <--- cg14734sivit ---> [::CG-ID::] 195
18 [::GENE::] <--- 1999 ---> bind ---> fig. ---> [::CG-ID::] 190
19 [::GENE::] <--- 6 ---> [::CG-ID::] 180
20 [::GENE::] <--- / ---> [::GENE::] ---> [::CG-ID::] 172
21 [::GENE::] <--- fig. ---> [::CG-ID::] 168
22 [::GENE::] <--- 2| ---> [::CG-ID::] 160
23 [::GENE::] <--- 1999 ---> [::CG-ID::] 152
24 [::GENE::] <--- overlap ---> [::CG-ID::] 140
25 [::GENE::] <--- and ---> [::GENE::] ---> [::CG-ID::] 130
26 [::GENE::] <--- a <--- [::GENE::] <--- [::CG-ID::] ---> [::CG-ID::] 125
27 [::GENE::] <--- [::CG-ID::] <--- and ---> [::CG-ID::] 122
28 [::GENE::] <--- cg14734sivit ---> clone ---> 87 ---> [::CG-ID::] 120
29 [::GENE::] <--- gene ---> [::CG-ID::] 104
30 [::GENE::] <--- and ---> and ---> [::CG-ID::] 92

56



	Chapter One: Introduction
	1.1 Background
	1.2 Aim

	Chapter Two: Environment
	2.1 Lucene
	2.2 Indexed papers
	2.3 The interface
	2.3 Synonym sets

	Chapter 3: The Query System
	3.1 Baseline
	3.2 Synonym expansion
	3.3 Pattern scoring
	3.4 Distance scoring

	Chapter 4: Evaluation Methods
	4.1 Basic measures
	4.2 Precision-Recall curve
	4.3 MAP (Mean average precision)
	4.4 Precision, recall and F-measure curves
	4.5 Lexical variance
	4.6 Number of new results
	4.7 Spearman's rank correlation

	Chapter 5: Experiments
	5.1 Gold standard
	5.2 Results
	5.2.1 Baseline
	5.2.2 Synonym expansion
	5.2.3 Pattern scoring
	5.2.4 Distance scoring


	Chapter 6: Conclusion and Future Work
	References
	Appendix A: Express-Gene patterns
	Appendix B: Gene-CGID patterns

