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Neural network training

How do we find values for the weight matrices?

Gradient descent training
Start with random weight values
For each training example:

1. Calculate the network prediction
2. Measure the error between prediction and 

the correct label
3. Update all the parameters, so that they 

would make a smaller error on this 
training example
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Loss function

Loss function is used to calculate the error 
between the predicted value and the correct 
value.

For example: mean squared error

- predicted value
- correct value (gold standard)

- training examples
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Loss function

We want to update our model parameters, so 
that the model has a smaller loss L

For each parameter w, we can calculate the 
derivative of L with respect to w:
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Derivatives

Partial derivative - the derivative with respect to 
one parameter, while keeping the others 
constant.

- How much does L change, when we 
slightly increase w

- If we increase w, L will also increase

- If we increase w, L will decrease
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Derivatives
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Gradient descent

We always want to move any parameter w 
towards a smaller loss L
The parameters are updated following the rule:

- the learning rate, it controls how big is 
the update step that we take

- parameter w at time step t
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Gradient descent

Let’s calculate derivative of  L with respect to w0

Can use the chain rule:
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Gradient descent
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Gradient descent

We have calculated the partial derivative

Now we can update the weight parameter

We do this for every parameter in the neural 
net, although this process can be simplified
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Gradient

Gradient - a vector containing partial derivatives 
for all the model parameters.
Can also call it the “error” vector

In a high-dimensional parameter space, it shows 
us the way in which we want to move
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Gradient descent

Move in the direction of the negative gradient
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Language model loss function

- loss for training example k

- possible words in the output layer

- binary variable for the correct answer
1 if j is the correct word
0 otherwise

- out predicted probability for j
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Backpropagation

Activation: we start with 
the input and move 
through the network to 
make a prediction

Backpropagation: we start 
from the output layer and 
move towards the input 
layer, calculating partial 
derivatives and weight 
updates
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Backpropagation

We’ll go through 
backpropagation for a 
neural language model

The derivatives can be 
found the same way as 
we did for a simple 
neuron

The graph explicitly 
shows stages z and s 
for clarity



Marek Rei, 2015

Backpropagation

1. Take a training 
example and perform 
a feedforward pass 
through the network.

Values in output 
vector o will be word 
probabilities.
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Backpropagation

2. Calculate the error in 
the output layer

- Vector of correct 
answers.
Position j will be 1 if 
word j is the correct 
word. 0 otherwise.
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Backpropagation

3. Calculate the error 
for the output weights
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Backpropagation

4. Calculate error at 
hidden layer z

- element-wise 
multiplication

derivative of 
sigmoid

partial derivative 
of h
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Backpropagation

5. Calculate error for 
hidden weights
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Backpropagation

6. Calculate error for 
input vectors
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Backpropagation

7. Update weight 
matrices
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Backpropagation

8. Update the input 
vectors
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The general pattern

⚬ Error at a hidden layer
⚬ = error at the next layer,
⚬ multiplied by the weights between the layers,
⚬ and element-wise multiplied with the derivative of 

the activation function

⚬ Error on the weights
⚬ = error at the next layer,
⚬ multiplied by the values from the previous layer
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Representation learning

Can think of word 
representations as 
just another weight 
matrix

We update E using 
the same logic as 
Wout, W0, W1, and W2
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Backpropagation tips

⚬ The error matrices have the same 
dimensionality as the parameter matrices! 
This can help when debugging.

If            is a 10x20 matrix, then           is also a 
10x20 matrix

⚬ Calculate the errors before updating the 
weights.
Otherwise you’ll backpropagate with wrong 
(updated) weights.
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Activation functions

There are different possible activation functions
⚬ It should be differentiable
⚬ We can choose the best one using a 

development set

Linear
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Activation functions

Logistic function (sigmoid)

Tanh
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Activation functions

Rectifier (ReLU)

Softplus
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Overfitting
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Regularisation

One way to prevent overfitting is to motivate the 
model to keep all weight values small

We can add this into our loss function

The higher the weight values, the larger the loss 
that we want to minimise
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Hyperparameters
Initial weights
⚬ Set randomly to some small values around 0
⚬ Strategy 1: 
⚬ Strategy 2: 

Learning rate
⚬ Choose an initial value. Often 0.1 or 0.01
⚬ Decrease the learning rate during training
⚬ Stop training when performance on the 

development data has not improved
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Deep learning

Deep learning - learning with many non-linear 
layers

Each consecutive layer will learn more 
complicated patterns of the output from the 
previous layer

We could add an extra hidden layer into our 
language model, and it would be a deep 
network
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Deep learning
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Neural nets vs traditional models

Negative:
⚬ More unstable, settings need to be just right
⚬ Less explainable (black box)
⚬ Computationally demanding

Positive:
⚬ Less feature engineering (representation 

learning)
⚬ More expressive and more flexible
⚬ Have been shown to outperform traditional 

models on many tasks
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Gradient checking
A way to check that your gradient descent is 
implemented correctly. Two ways to calculate 
the gradient.

Method 1: from your weight updates

Method 2: actually changing the weight a bit and 
measuring the change in loss
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Extra materials
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Dataset

⚬ A new benchmark dataset for LM evaluation
⚬ Cleaned and tokenised
⚬ 0.8 billion words for training
⚬ 160K words used for testing
⚬ Discarding words with count < 3
⚬ Vocabulary V = 793471
⚬ Using <S>, </S> and <UNK> tokens
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Results


