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Recap

⚬ Language modelling: 
⚬ Calculates the probability of a sentence
⚬ Calculates the probability of a word in the 

sentence
⚬ N-gram language modelling
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Recap

⚬ Assigning zero probabilities causes problems
⚬ We use smoothing to distribute some 

probability mass to unseen n-grams
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Recap

⚬ “Stupid” backoff

⚬ Kneser-Ney smoothing

⚬ Interpolation
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Evaluation: extrinsic

How to evaluate language models?
The best option: evaluate the language model 
when solving a specific task

⚬ Speech recognition accuracy
⚬ Machine translation accuracy
⚬ Spelling correction accuracy

Compare 2 (or more) models, and see which one 
is best
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Evaluation: extrinsic

Evaluating next word prediction directly

The

In

A

General

Natural

world

language

resources

resources

enemies

processing

understanding

sentences

text

toolkit

Natural language processing Accuracy 
1/3 = 0.33
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Evaluation: extrinsic

Evaluating next word prediction directly
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Evaluation: intrinsic

Extrinsic evaluation can be
⚬ time consuming
⚬ expensive

Instead, can evaluate the task of language 
modelling directly
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Evaluation: intrinsic

Prepare disjoint datasets

Measure performance on the test set, using an 
evaluation metric.

Training data Development 
data

Test
data
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Evaluation: intrinsic

What makes a good language model?

Language model that prefers good sentences to 
bad ones

Language model that prefers sentences that are
⚬ real sentences
⚬ more frequently observed
⚬ grammatical
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Perplexity

The most common evaluation measure for 
language modelling: perplexity

Intuition: The best language model is the one 
that best predicts an unseen test set.
Might not always predict performance on an 
actual task.
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Perplexity

The best language model is the one that best 
predicts an unseen test set

Natural language __________

processing 0.4

understanding 0.3

sentences 0.15

text 0.1

toolkit 0.05

database 0.4

sentences 0.3

and 0.15

understanding 0.1

processing 0.05

processing 0.6

information 0.2

query 0.1

sentence 0.09

text 0.01
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Perplexity

Perplexity is the probability of the test set, 
normalised by the number of words

Chain rule

Bigrams
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Perplexity example

Text:      natural language processing
w p(w | language)

processing 0.6

language 0.2

the 0.1

natural 0.1

w p(w | natural)

processing 0.4

language 0.35

natural 0.2

the 0.05

w p(w | <s>)

processing 0.4

language 0.3

the 0.17

natural 0.13

What is the perplexity?

Minimising perplexity means maximising the 
probability of the text
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Perplexity example

Let’s suppose a sentence consisting of random 
digits

7 5 0 9 2 3 7 8 5 1 …
What is the perplexity of this sentence according 
to a model that assigns P=1/10 to each digit?
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Perplexity

Trained on 38 million words, tested on 1.5 
million words on WSJ text

Uniform Unigram Bigram Trigram

Perplexity vocabulary 
size V

962 170 109

Lower perplexity = better language model

Jurafsky (2012)
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Problems with N-grams

Problem 1: They are sparse

There are V4 possible 4-grams. With V=10,000 
that’s 1016 4-grams.
We will only see a tiny fraction of them in our 
training data.
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Problems with N-grams

Problem 2: words are independent

They only map together identical words, but 
ignore similar or related words.

If 
P(blue daffodil) == 0

we could use the intuition that “blue” is related 
to  “yellow” and 

P(yellow daffodil) > 0
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Vector representation

⚬ Let’s represent words (or any objects) as 
vectors

⚬ Let’s choose them, so that similar words have 
similar vectors

A vector is just an ordered list of values

[0.0, 1.0, 8.6, 0.0, -1.2, 0.1]
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Vector representation

How can we represent words as vectors?

Option 1: each element represents the word. 
Also known as “1-hot” or “1-of-V” representation.

bear cat frog

bear 1 0 0

cat 0 1 0

frog 0 0 1

bear=[1.0, 0.0, 0.0]                        cat=[0.0, 1.0, 0.0]  
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Vector representation

Option 2: each element represents a property, 
and they are shared between the words.
Also known as “distributed” representation.

furry dangerous mammal

bear 0.9 0.85 1

cat 0.85 0.15 1

frog 0 0.05 0

bear = [0.9, 0.85, 1.0]               cat = [0.85, 0.15, 1.0]
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Vector representation

When using 1-hot vectors, we can’t fit many and 
they tell us very little.
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Vector representation
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Vector representation

furry dangerous

bear 0.9 0.85
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Vector representation

furry dangerous

bear 0.9 0.85

cat 0.85 0.15
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Vector representation

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8



Marek Rei, 2015

Vector representation

Distributed vectors group similar words/objects 
together

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8

lion 0.85 0.9

dog 0.8 0.15
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Vector representation

Can use cosine to calculate similarity between 
two words

cos(lion, bear) = 0.998
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Vector representation

Can use cosine to calculate similarity between 
two words

cos(lion, bear) = 0.998
cos(lion, dog) = 0.809
cos(cobra, dog) = 0.727
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Vector representation

We can infer some information, based only on 
the vector of the word
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Vector representation

We don’t even need to know the labels on the 
vector elements
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Vector representation

The vectors are usually not 2 or 3-dimensional. 
More often 100-1000 dimensions.

bear -0.089383 -0.375981 -0.337130 0.025117 -0.232542 -0.224786 0.148717 -0.154768 -0.260046 
-0.156737 -0.085468 0.180366 -0.076509 0.173228 0.231817 0.314453 -0.253200 0.170015 
-0.111660 0.377551 -0.025207 -0.097520 -0.020041 0.117727 0.105745 -0.352382 0.010241 
0.114237 -0.315126 0.196771 -0.116824 -0.091064 -0.291241 -0.098721 0.297539 0.213323 
-0.158814 -0.157823 0.152232 0.259710 0.335267 0.195840 -0.118898 0.169420 -0.201631 
0.157561 0.351295 0.033166 0.003641 -0.046121 0.084251 0.021727 -0.065358 -0.083110 
-0.265997 0.027450 0.372135 0.040659 0.202577 -0.109373 0.183473 -0.380250 0.048979 
0.071580 0.152277 0.298003 0.017217 0.072242 0.541714 -0.110148 0.266429 0.270824 0.046859 
0.150756 -0.137924 -0.099963 -0.097112 -0.110336 -0.018136 -0.032682 0.182723 0.260882 
-0.146807 0.502611 0.034849 -0.092219 -0.103714 -0.034353 0.112178 0.065348 0.161681 
0.006538 0.364870 0.153239 -0.366863 -0.149125 0.413624 -0.229378 -0.396910 -0.023116
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Idea

⚬ Let’s build a neural network language model
⚬ … that represents each word as a vector
⚬ … and similar words have similar vectors

⚬ Similar contexts will predict similar words
⚬ Optimise the vectors together with the 

model, so we end up with vectors that 
perform well for language modelling
(aka representation learning)
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Neuron

⚬ A neuron is a very basic classifier
⚬ It takes a number of input signals 

(like a feature vector) and outputs a single 
value (a prediction).
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Artificial neuron

Input: [x0, x1, x2]
Output: y
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Artificial neuron
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Sigmoid function

⚬ Takes in any value 
⚬ Squeezes it into a 

range between 
0 and 1

⚬ Also known as the 
logistic function

⚬ A non-linear activation 
function allows us to 
solve non-linear 
problems
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Artificial neuron
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Artificial neuron

x0 x1 z y

bear 0.9 0.85 -0.8 0.31

cat 0.85 0.15 0.55 0.63

cobra 0.0 0.8 -1.6 0.17

lion 0.85 0.9 -0.95 0.28

dog 0.8 0.15 0.5 0.62
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Artificial neuron

It is common for a neuron to have a separate 
bias input.
But when we do representation learning, we 
don’t really need it.
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Neural network

Many neurons connected together
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Neural network

Usually, the neuron is shown as a single unit
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Neural network

Or a whole layer of neurons is represented as a 
block
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Matrix operations

⚬ Vectors are matrices with a single column
⚬ Elements indexed by row and column
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Matrix operations

Multiplying by a constant - each element is 
multiplied individually
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Matrix operations

Adding matrices - the corresponding elements 
are added together
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Matrix operations

Matrix multiplication - multiply and add 
elements in corresponding row and column
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Matrix operations

Matrix transpose - rows become columns, 
columns become rows
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Neuron activation with vectors
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Neuron activation with vectors
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Feedforward activation

⚬ The same process applies when activating 
multiple neurons

⚬ Now the weights are in a matrix as opposed 
to a vector

⚬ Activation f(z) is applied to each neuron 
separately
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Feedforward activation
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Feedforward activation

1. Take vector from the previous layer
2. Multiply it with the weight matrix
3. Apply the activation function
4. Repeat
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Feedforward activation
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Neural network language model

Input: vector 
representations of 
previous words
E(wi-3), E(wi-2), E(wi-1)

Output: The 
conditional probability 
of wi being the next 
word
P(wi | wi-1 wi-2 wi-3)
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Neural network language model

We can also think of 
the input as a 
concatenation of the 
context vectors

The hidden layer h is 
calculated as in 
previous examples

How do we calculate 
P(wi | wi-1 wi-2 wi-3) ?
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Softmax

⚬ Takes a vector of values and squashes them 
into the range (0,1), so that they add up to 1

⚬ We can use this as a probability distribution
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Softmax

0 1 2 3 SUM

z 2.0 5.0 -4.0 0.0 3

exp(z) 7.389 148.413 0.018 1.0 156.82

softmax(z) 0.047 0.946 0.000 0.006 ~1.0
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Softmax

0 1 2 3 SUM

z -5.0 -4.5 -4.0 -6.0 -19.5

exp(z) 0.007 0.011 0.018 0.002 0.038

softmax(z) 0.184 0.289 0.474 0.053 1.0
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Neural network language model

Our output vector o 
has an element for 
each possible word wj

We take a softmax over 
that vector

The result is used as
P(wi | wi-1 wi-2 wi-3)
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Neural network language model

1. Multiply input vectors 
with weights

2. Apply the activation 
function

Bengio et al. (2003)
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Neural network language model

3. Multiply hidden vector 
with output weights

4. Apply softmax to the 
output vector

Now the j-th element in the output vector, oj, 
contains the probability of wj being the next 
word.
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NNLM example

Word embedding 
(encoding) matrix E
V = 4, M = 3

Each word is 
represented as a 3-
dimensional column 
vector

Bob often goes swimming

-0.5 -0.2 0.3 0

0.1 0.5 -0.1 -0.4

0.4 -0.3 0.6 0.2
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NNLM example

The weight matrices 
going from input to the 
hidden layer

They are position-
dependent

0.2 -0.1 0.4

-0.2 0.3 0.5

0.1 0 -0.3

0 -0.2 0.2

0.1 0.3 -0.1

-0.3 0.4 0.5

-0.1 0.1 -0.4

0.3 0 0.4

-0.2 0.2 -0.3

W0

W1

W2
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NNLM example

Output (decoding) 
matrix, Wout

Each word is 
represented as a 3-
dimensional row 
vector

Bob -0.4 -0.6 0.1

often 0.5 -0.2 -0.5

goes -0.1 0 0.4

swimming 0.6 0.2 -0.3
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NNLM example

1. Multiply input vectors with weights

W2E(wi-3) W1E(wi-2) W0E(wi-1) z

-0.1 -0.16 0.31 0.05

0.01 0.16 0.21 0.38

0 0.11 -0.15 -0.04



Marek Rei, 2015

NNLM example

2. Apply the activation function

h

0.512

0.594

0.49
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NNLM example

3. Multiply hidden vector with output weights

s

-0.512

-0.108

0.145

0.279
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NNLM example

4. Apply softmax to the output vector

o

Bob 0.151

often 0.226

goes 0.291

swimming 0.333

P(Bob | Bob often goes) = 0.151
P(swimming | Bob often goes) = 0.333
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Extra materials
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Entropy

The expectation of a discrete random variable X   
with probability          

The expected value of a function           of a 
discrete random variable      with probability
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Entropy

The entropy of a random variable      is the 
expected negative log probability

Entropy is a measure of uncertainty.

Entropy is also a lower bound on the average 
number of bits required to encode a message.
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Entropy of a coin toss

A coin toss comes out heads (X=1) with 
probability p, and tails (X=0) with 
probability 1−p.

1) p = 0.5

2) p = 1.0
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Cross entropy

The cross-entropy of a (true) distribution p*
and a (model) distribution p is defined as:

H(p*,p) indicates the avg. number of bits 
required to encode messages sampled from p* 
with a coding scheme based on p.



Marek Rei, 2015

Cross entropy

We can approximate H(p*,p) with the 
normalised log probability of a single very long 
sequence sampled from p.
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Perplexity and entropy
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Perplexity example

Text:      natural language processing
w p(w | language)

processing 0.6

language 0.2

the 0.1

natural 0.1

w p(w | natural)

processing 0.4

language 0.35

natural 0.2

the 0.05

w p(w | <s>)

processing 0.4

language 0.3

the 0.17

natural 0.13

What is the perplexity?

And entropy?


