
Machine Learning for Language
Modelling

Marek Rei

Part 2: N-gram smoothing

Marek Rei, 2015

Recap

P(word) =

number of times we see this word in the text

total number of words in the text

P(word | context) =
number of times we see context followed by word

number of times we see context

Marek Rei, 2015

Recap

P(the weather is nice) = ?

P(the weather is nice) =
P(the) * P(weather | the) *
P(is | the weather) *
P(nice | the weather is)

Using the chain rule

Marek Rei, 2015

Recap

P(the weather is nice) =
P(the | <s>) *
P(weather | the) *
P(is | weather) * P(nice | is)

Using the Markov assumption

Marek Rei, 2015

Data sparsity

The scientists are trying to solve the mystery

If we have not seen “trying to solve” in our training data,
then

P(solve | trying to) = 0

⚬ The system will consider this to be an impossible
word sequence

⚬ Any sentence containing “trying to solve” will have 0
probability

⚬ Cannot compute perplexity on the test set (div by 0)

Marek Rei, 2015

Data sparsity

Shakespeare works contain N=884,647 tokens,
with V=29,066 unique words.

⚬ Around 300,000 unique bigrams by
Shakespeare

⚬ There are V*V = 844,000,000 possible
bigrams

⚬ So 99.96% of the possible bigrams were
never seen

Marek Rei, 2015

Data sparsity

Cannot expect to see all possible sentences (or
word sequences) in the training data.

Solution 1: use more training data
⚬ Does help but usually not enough

Solution 2: Assign non-zero probability to
unseen n-grams
⚬ Known as smoothing

Marek Rei, 2015

Smoothing: intuition

Take a bit from the ones who have,
and distribute to the ones who don’t

P(w | trying to)

Marek Rei, 2015

Smoothing: intuition

Take a bit from the ones who have,
and distribute to the ones who don’t

P(w | trying to)

Make sure there’s still a valid probability distribution!

Marek Rei, 2015

Really simple approach

During training
⚬ Choose your vocabulary

(e.g., all words that occur at least 5 times)
⚬ Replace all other words by a special token

<unk>

During testing
⚬ Replace any word not in the fixed vocabulary

with <unk>
⚬ But we still have zero counts with longer n-

grams

Marek Rei, 2015

Add-1 smoothing (Laplace)

Add 1 to every n-gram count

As if we’ve seen every possible n-gram at least
once.

Marek Rei, 2015

Add-1 counts

Original:

Add-1:

Marek Rei, 2015

Add-1 probabilities

Original:

Add-1:

Marek Rei, 2015

Reconstituting counts

Let’s calculate the counts that we should have
seen, in order to get the same probabilities as
Add-1 smoothing.

Marek Rei, 2015

Add-1 reconstituted counts

Original:

Add-1:

Marek Rei, 2015

Add-1 smoothing

Advantage:
⚬ Very easy to implement

Disadvantages:
⚬ Takes too much probability mass from real

events
⚬ Assigns too much probability to unseen

events
⚬ Doesn’t take the predicted word into account

Not really used in practice

Marek Rei, 2015

Additive smoothing

Add k to each n-gram

Generalisation of Add-1 smoothing

Marek Rei, 2015

Good-Turing smoothing

 = frequency of frequency c
The count of things we’ve seen c times

Example: hello how are you hello hello you

w c

hello 3

you 2

how 1

are 1

N3 = 1

N2 = 1

N1 = 2

Marek Rei, 2015

Good-Turing smoothing

⚬ Let’s find the probability mass assigned to
words that occurred only once

⚬ Distribute that probability mass to words that
were never seen

- the probability mass for words
 with frequency c+1

- new (adjusted) word count

- original (real) word count

Marek Rei, 2015

Good-Turing smoothing

Bigram ‘frequencies of frequencies’ from 22 million AP
bigrams, and Good-Turing re-estimations after Church
and Gale (1991)

N0 = V2 - |number of observed bigrams|

Marek Rei, 2015

Good-Turing smoothing

- Good-Turing adjusted count for the
bigram

Marek Rei, 2015

Good-Turing smoothing

⚬ If there are many words that we have only
seen once, then unseen words get a high
probability

⚬ If we there are only very few words we’ve
seen once, then unseen words get a low
probability

⚬ The adjusted counts still sum up to the
original value

Marek Rei, 2015

Good-Turing smoothing

Problem:
What if Nc+1 = 0?

c Nc

100 1

50 2

49 4

48 5

... ...

N50 = 2

N51 = 0

Marek Rei, 2015

Good-Turing smoothing

Solutions
⚬ Approximate Nc at high values of c with a

smooth curve

Choose a and b so that f(c) approximates Nc
at known values

⚬ Assume that c is reliable at high values, and
only use c* for low values

Have to make sure that the probabilities are still
normalised

Marek Rei, 2015

Backoff

Perhaps we need to find the next word in the
sequence

Next Tuesday I will varnish ________

If we have not seen “varnish the” or “varnish
thou” in the training data, both Add-1 and Good-
Turing will give

P(the | varnish) = P(thou| varnish)

But intuitively
P(the | varnish) > P(thou| varnish)

Sometimes it’s helpful to use less context

Marek Rei, 2015

Backoff

⚬ Consult the most detailed model first and, if
that doesn’t work, back off to a lower-order
model
⚬ If the trigram is reliable (has a high count),

then use the trigram LM
⚬ Otherwise, back off and use a bigram LM

⚬ Continue backing off until you reach a model
that has some counts

⚬ Need to make sure we discount the higher
order probabilities, or we won’t have a valid
probability distribution

Marek Rei, 2015

“Stupid” Backoff

⚬ A score, not a valid probability
⚬ Works well in practice, on large scale datasets

- number of words in text

Marek Rei, 2015

Interpolation

⚬ Instead of backing off, we could combine all
the models

⚬ Use evidence from unigram, bigram, trigram,
etc.

⚬ Usually works better than backoff

Marek Rei, 2015

Interpolation

⚬ Train different n-gram language models on
the training data

⚬ Using these language models, optimise
lambdas to perform best on the development
data

⚬ Evaluate the final system on the test data

Training data Development
data

Test
data

Marek Rei, 2015

Jelinek-Mercer interpolation

Lambda values can change based on the n-gram
context
Usually better to group lambdas together, for
example based on n-gram frequency, to reduce
parameters

Marek Rei, 2015

Absolute discounting

Combining ideas from
interpolation and Good-
Turing

Good-Turing subtracts
approximately the same
amount from each
count

Use that directly

Marek Rei, 2015

Absolute discounting

⚬ Subtract a constant amount D from each
count

⚬ Assign this probability mass to the lower
order language model

Marek Rei, 2015

Absolute discounting

The number of unique words wj that follow context (wi-2 wi-1)
Also the number of trigrams we subtract D from

The is a free variable

discounted trigram probability bigram probability

backoff weight

Marek Rei, 2015

Interpolation vs absolute discounting

- Trigram count

- Discounting parameter

trigram probability bigram probabilitybigram weighttrigram weight

Marek Rei, 2015

Kneser-Ney smoothing

⚬ Heads up: Kneser-Ney is considered the
state-of-the-art in N-gram language modelling

⚬ Absolute discounting is good, but it has some
problems

⚬ For example: if we have not seen a bigram at
all, we are going to rely only on the unigram
probability

Marek Rei, 2015

Kneser-Ney smoothing

I can’t see without my reading __________

⚬ If we’ve never seen the bigram “reading
glasses”, we’ll back off to just P(glasses)

⚬ “Francisco” is more common than “glasses”,
therefore
 P(Francisco) > P(glasses)

⚬ But “Francisco” almost always occurs only
after “San”

Marek Rei, 2015

Kneser-Ney smoothing

Instead of
- how likely is w

- how likely is w to appear as a
novel continuation

we want to use

- number of unique words
that come before w

- total unique bigrams

Marek Rei, 2015

Kneser-Ney smoothing

For a bigram language model:

General form:

Marek Rei, 2015

Kneser-Ney smoothing

Pcontinuation(is) = ?
Pcontinuation(Paul) = ?
Pcontinuation(running) = ?

PKN(running|is) = ?

Paul is running

Mary is running

Nick is cycling

They are running

Marek Rei, 2015

Kneser-Ney smoothing

Paul is running

Mary is running

Nick is cycling

They are running

Pcontinuation(is) = 3/11
Pcontinuation(Paul) = 1/11
Pcontinuation(running) = 2/11

PKN(running|is) =
1/3 + (2/3) * (2/11)

Marek Rei, 2015

Recap

⚬ Assigning zero probabilities causes problems
⚬ We use smoothing to distribute some

probability mass to unseen n-grams

Marek Rei, 2015

Recap

Add-1 smoothing

Good-Turing smoothing

Marek Rei, 2015

Recap

Backoff

Interpolation

Marek Rei, 2015

Recap

Absolute discounting

Kneser-Ney

References

Speech and Language Processing
Daniel Jurafsky & James H. Martin (2000)

Evaluating language models. Julia Hockenmaier.
https://courses.engr.illinois.edu/cs498jh/

Language Models. Nitin Madnani, Jimmy Lin. (2010)
http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/

An Empirical Study of Smoothing Techniques for Language Modeling
Stanley F. Chen, Joshua Goodman. (1998)
http://www.speech.sri.com/projects/srilm/manpages/pdfs/chen-goodman-tr-10-98.
pdf

Natural Language Processing
Dan Jurafsky & Christopher Manning (2012)
https://www.coursera.org/course/nlp

https://courses.engr.illinois.edu/cs498jh/
https://courses.engr.illinois.edu/cs498jh/
http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/
http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/
http://www.speech.sri.com/projects/srilm/manpages/pdfs/chen-goodman-tr-10-98.pdf
http://www.speech.sri.com/projects/srilm/manpages/pdfs/chen-goodman-tr-10-98.pdf
http://www.speech.sri.com/projects/srilm/manpages/pdfs/chen-goodman-tr-10-98.pdf
https://www.coursera.org/course/nlp
https://www.coursera.org/course/nlp

Marek Rei, 2015

Extra materials

Marek Rei, 2015

Katz Backoff

Discount using Good-Turing, then distribute the
extra probability mass to lower-order n-grams

