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Recap

P(word) =

number of times we see this word in the text

total number of words in the text

P(word | context) =
number of times we see context followed by word

number of times we see context
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Recap

P(the weather is nice) = ?

P(the weather is nice) =
P(the) * P(weather | the) *
P(is | the weather) *
P(nice | the weather is)

Using the chain rule
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Recap

P(the weather is nice) =
P(the | <s>) * 
P(weather | the) *
P(is | weather) * P(nice | is)

Using the Markov assumption
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Data sparsity

The scientists are trying to solve the mystery

If we have not seen “trying to solve” in our training data, 
then

P(solve | trying to) = 0

⚬ The system will consider this to be an impossible 
word sequence

⚬ Any sentence containing “trying to solve” will have 0 
probability

⚬ Cannot compute perplexity on the test set (div by 0)
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Data sparsity

Shakespeare works contain N=884,647 tokens, 
with V=29,066 unique words.

⚬ Around 300,000 unique bigrams by 
Shakespeare

⚬ There are V*V = 844,000,000 possible 
bigrams

⚬ So 99.96% of the possible bigrams were 
never seen
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Data sparsity

Cannot expect to see all possible sentences (or 
word sequences) in the training data.

Solution 1: use more training data
⚬ Does help but usually not enough

Solution 2: Assign non-zero probability to 
unseen n-grams
⚬ Known as smoothing
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Smoothing: intuition

Take a bit from the ones who have, 
and distribute to the ones who don’t

P(w | trying to)
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Smoothing: intuition

Take a bit from the ones who have, 
and distribute to the ones who don’t

P(w | trying to)

Make sure there’s still a valid probability distribution!



Marek Rei, 2015

Really simple approach

During training
⚬ Choose your vocabulary

(e.g., all words that occur at least 5 times)
⚬ Replace all other words by a special token 

<unk>

During testing
⚬ Replace any word not in the fixed vocabulary 

with <unk>
⚬ But we still have zero counts with longer n-

grams
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Add-1 smoothing (Laplace)

Add 1 to every n-gram count

As if we’ve seen every possible n-gram at least 
once.
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Add-1 counts

Original:

Add-1:
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Add-1 probabilities

Original:

Add-1:
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Reconstituting counts

Let’s calculate the counts that we should have 
seen, in order to get the same probabilities as 
Add-1 smoothing.
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Add-1 reconstituted counts

Original:

Add-1:
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Add-1 smoothing

Advantage:
⚬ Very easy to implement

Disadvantages:
⚬ Takes too much probability mass from real 

events
⚬ Assigns too much probability to unseen 

events
⚬ Doesn’t take the predicted word into account

Not really used in practice
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Additive smoothing

Add k to each n-gram

Generalisation of Add-1 smoothing
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Good-Turing smoothing

    = frequency of frequency c
The count of things we’ve seen c times

Example: hello how are you hello hello you 

w c

hello 3

you 2

how 1

are 1

N3 = 1

N2 = 1

N1 = 2
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Good-Turing smoothing

⚬ Let’s find the probability mass assigned to 
words that occurred only once

⚬ Distribute that probability mass to words that 
were never seen

- the probability mass for words
  with frequency c+1

- new (adjusted) word count

- original (real) word count
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Good-Turing smoothing

Bigram ‘frequencies of frequencies’ from 22 million AP 
bigrams, and Good-Turing re-estimations after Church 
and Gale (1991)

N0 = V2 - |number of observed bigrams|
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Good-Turing smoothing

- Good-Turing adjusted count for the 
bigram
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Good-Turing smoothing

⚬ If there are many words that we have only 
seen once, then unseen words get a high 
probability

⚬ If we there are only very few words we’ve 
seen once, then unseen words get a low 
probability

⚬ The adjusted counts still sum up to the 
original value
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Good-Turing smoothing

Problem:
What if Nc+1 = 0?

c Nc

100 1

50 2

49 4

48 5

... ...

N50 = 2

N51 = 0



Marek Rei, 2015

Good-Turing smoothing

Solutions
⚬ Approximate Nc at high values of c with a 

smooth curve

Choose a and b so that f(c) approximates Nc 
at known values

⚬ Assume that c is reliable at high values, and 
only use c* for low values

Have to make sure that the probabilities are still 
normalised
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Backoff

Perhaps we need to find the next word in the 
sequence

Next Tuesday I will varnish ________

If we have not seen “varnish the” or “varnish 
thou” in the training data, both Add-1 and Good-
Turing will give

P(the | varnish) = P(thou| varnish)

But intuitively
P(the | varnish) > P(thou| varnish)

Sometimes it’s helpful to use less context
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Backoff

⚬ Consult the most detailed model first and, if 
that doesn’t work, back off to a lower-order 
model 
⚬ If the trigram is reliable (has a high count), 

then use the trigram LM
⚬ Otherwise, back off and use a bigram LM

⚬ Continue backing off until you reach a model 
that has some counts

⚬ Need to make sure we discount the higher 
order probabilities, or we won’t have a valid 
probability distribution
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“Stupid” Backoff

⚬ A score, not a valid probability
⚬ Works well in practice, on large scale datasets

- number of words in text
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Interpolation

⚬ Instead of backing off, we could combine all 
the models

⚬ Use evidence from unigram, bigram, trigram, 
etc.

⚬ Usually works better than backoff
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Interpolation

⚬ Train different n-gram language models on 
the training data

⚬ Using these language models, optimise 
lambdas to perform best on the development 
data

⚬ Evaluate the final system on the test data

Training data Development 
data

Test
data
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Jelinek-Mercer interpolation

Lambda values can change based on the n-gram 
context
Usually better to group lambdas together, for 
example based on n-gram frequency, to reduce 
parameters
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Absolute discounting

Combining ideas from 
interpolation and Good-
Turing

Good-Turing subtracts 
approximately the same 
amount from each 
count

Use that directly
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Absolute discounting

⚬ Subtract a constant amount D from each 
count

⚬ Assign this probability mass to the lower 
order language model
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Absolute discounting

The number of unique words wj that follow context (wi-2 wi-1)
Also the number of trigrams we subtract D from

The     is a free variable

discounted trigram probability bigram probability

backoff weight
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Interpolation vs absolute discounting

- Trigram count

- Discounting parameter 

trigram probability bigram probabilitybigram weighttrigram weight
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Kneser-Ney smoothing

⚬ Heads up: Kneser-Ney is considered the 
state-of-the-art in N-gram language modelling

⚬ Absolute discounting is good, but it has some 
problems

⚬ For example: if we have not seen a bigram at 
all, we are going to rely only on the unigram 
probability
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Kneser-Ney smoothing

I can’t see without my reading __________

⚬ If we’ve never seen the bigram “reading 
glasses”, we’ll back off to just P(glasses)

⚬ “Francisco” is more common than “glasses”, 
therefore
                  P(Francisco) > P(glasses)

⚬ But “Francisco” almost always occurs only 
after “San”



Marek Rei, 2015

Kneser-Ney smoothing

Instead of
- how likely is w

- how likely is w to appear as a 
novel continuation 

we want to use

- number of unique words 
that come before w

- total unique bigrams
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Kneser-Ney smoothing

For a bigram language model:

General form:
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Kneser-Ney smoothing

Pcontinuation(is) = ?
Pcontinuation(Paul) = ?
Pcontinuation(running) = ?

PKN(running|is) = ?

Paul is running

Mary is running

Nick is cycling

They are running
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Kneser-Ney smoothing

Paul is running

Mary is running

Nick is cycling

They are running

Pcontinuation(is) = 3/11
Pcontinuation(Paul) = 1/11
Pcontinuation(running) = 2/11

PKN(running|is) = 
1/3 + (2/3) * (2/11)
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Recap

⚬ Assigning zero probabilities causes problems
⚬ We use smoothing to distribute some 

probability mass to unseen n-grams
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Recap

Add-1 smoothing

Good-Turing smoothing
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Recap

Backoff

Interpolation
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Recap

Absolute discounting

Kneser-Ney
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Extra materials
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Katz Backoff

Discount using Good-Turing, then distribute the 
extra probability mass to lower-order n-grams


